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Deutsche Zusammenfassung

Eine polytopale Unterteilung eines konvexen Polytops P ist eine Menge von Poly-
topen deren Ecken Ecken von P sind, deren Vereinigung P ergibt und die eine gewisse
Schnittbedingung erfüllen. Polytopale Unterteilungen und insbesondere Triangulierun-
gen, das heißt Unterteilungen in Simplexe, tauchen in den unterschiedlichsten Teilge-
bieten der Mathematik auf. Eine spezielle Art von Unterteilungen sind die regulären
Unterteilungen, die durch Gewichtsfunktionen auf den Ecken von P definiert werden:
Es existiert ein Polytop, das Sekundärpolytop von P, dessen Ecken genau den regulären
Triangulierungen entsprechen und dessen Seitenverband isomorph zum Verband aller
regulären Unterteilungen von P ist. Die Facetten dieses Polytops entsprechen dann den
gröbsten Unterteilungen von P. Die Untersuchung dieser Unterteilungen ist ein Haupt-
thema dieser Arbeit.

Die einfachst möglichen (nichttrivialen) Unterteilungen von P sind jene mit nur zwei
maximalen Seiten, die sogenannten Splits. Ein solcher Split wird von einer Hyperebene
definiert, die keine Kanten von P zerschneidet. Ursprünglich stammt diese Begriff aus der
Theorie der endlichen metrischen Räume. Dort definiert man den Tight-Span eines me-
trischen Raumes, der als polytopaler Komplex aufgefasst werden kann, und untersucht
die Zerlegung von Tight-Spans und endlichen metrischen Räumen in Split-Metriken.
Das sind (Pseudo-)Metriken, die entstehen, in dem man die Grundmenge des Raumes
in zwei Teile teilt und den Abstand zwischen Elementen aus verschiedenen Teilen mit 1
und sonst mit 0 definiert. Zwischen endlichen metrischen Räumen und polytopalen Un-
terteilungen besteht der folgende Zusammenhang: Benutzt man die Werte der Metrik
als Gewichtsfunktionen für die Ecken eines bestimmten Polytops, des zweiten Hyper-
simplex ∆(2, n), erhält man eine polytopale Unterteilung von ∆(2, n), deren Komplex der
inneren Seiten isomorph zum Tight-Span der Metrik ist. Interessanterweise entspricht
dann eine Split-Metrik genau einem Split von ∆(2, n). In dieser Arbeit werden verschie-
dene Resultate der Theorie der Tight-Spans und Splits endlicher metrischer Räume auf
beliebige Polytope verallgemeinert. Außerdem werden die Polytope klassifiziert, für die
alle Triangulierungen durch das Verfeinern von Splits gewonnen werden können.

Neben den Splits werden auch weitere Facetten des Sekundärpolytops untersucht.
Hierbei zeigt sich, dass der Tight-Span, der bei Splits ein 2-Simplex ist, also aus einer
einzelnen Kante besteht, bei allgemeinen gröbsten Unterteilungen sehr kompliziert wer-
den kann. Dies führt zur Definition einer speziellen Klasse gröbster Unterteilungen, den
k-Splits. Diese kommen den Splits in ihren Eigenschaften am nächsten, insbesondere ist
ihr Tight-Span ein (k − 1)-dimensionaler Simplex.

Weitere Objekte, die in dieser Dissertation untersucht werden, sind die (tropische)
Grassmann-Varietät Gr(k, n), die Tropikalisierung der Grassmann-Mannigfaltigkeit, wel-
che der Raum aller k-dimensionalen Unterräume eines Vektorraums ist, und eine enge
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4 DEUTSCHE ZUSAMMENFASSUNG

Verwandte, die Dress-Prävarietät Dr(k, n). Diese kann äquivalent definiert werden als
der Raum aller Gewichtsfunktionen des Hypersimplex ∆(k, n) (einer Verallgemeinerung
des zweiten Hypersimplex), die sogenannte Matroid-Unterteilungen definieren, oder als
der Raum aller tropischen Plücker-Vektoren. Diese beiden Betrachtungsweisen definie-
ren unterschiedliche Fächer-Strukturen, von denen im Fall k = 3 gezeigt wird, dass
sie übereinstimmen. Des Weiteren wird gezeigt, dass der Komplex aller Unterteilungen
von ∆(k, n), die Verfeinerungen von Splits sind, deren definierende Hyperebenen sich
nicht im Inneren von ∆(k, n) schneiden, ein Unterkomplex der Dress-Prävarietät ist.
Außerdem werden die Räume Dr(3, 7) und Gr(3, 7) explizit berechenet.
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CHAPTER 1

Introduction and Summary

A polytopal subdivision of a convex polytope P is a collection of polytopes with
union P such that all vertices of these polytopes are vertices of P and satisfying a certain
intersection property. Subdivisions and especially triangulations (i.e., subdivisions into
simplices) occur in various parts of mathematics; for an overview see the first chapter
of the forthcoming book by de Loera, Rambau, and Santos [19]. One way to construct
polytopal subdivisions of P is the following: Let w : Vert P→ R be a function assigning
a weight to each vertex of P. If we now lift each vertex according to its weight and
project the lower faces of the resulting polytope down to P, we obtain a subdivision
of P. Such subdivisions are called regular. It is an important structural result of
Gel′fand, Kapranov, and Zelevinsky [40] (see also [39, Chapter 7]) that there exists a
polytope SecPoly(P), called the secondary polytope of P, whose vertices are exactly the
regular triangulations of P. Moreover, they showed that the face poset of SecPoly(P) is
isomorphic to the poset of all regular subdivisions of P ordered by refinement. In this
way, the facets of SecPoly(P) correspond to those regular subdivisions of P that can
only be coarsened by the trivial subdivision. The main aim of this thesis is to begin an
investigation of these coarsest subdivisions.

The simplest possible (non-trivial) subdivisions of a polytope one can think of are
those with exactly two maximal faces. These are called splits and can be obtained
by cutting P with any hyperplane not cutting through any edge of P. The original
context in that splits appeared is the following: Consider a finite metric space, that

is, a function d :
(

[n]
2

)
→ R≥0 satisfying the triangle inequality. The tight span T (d) of

d is the set of all x ∈ Rn satisfying xi = supi, j(d(i, j) − x j). This set T (d) can also be
considered as the complex of bounded faces of a certain polyhedron and hence has a
natural structure as a polytopal complex. This construction goes back to Isbell [55] (as
the injective hull of a metric space) and was rediscovered by Dress [23], and Chrobak
and Lamore [17, 16] in two completely different contexts, motivated by applications in
biology (phylogenetic analysis) and computer science (k-server problem), respectively.
A main ingredient in the study of tight spans of finite metric spaces is the notion of
splits. These are (pseudo-) metrics obtained by partitioning the ground set into two
parts and defining the distance between elements in different parts to be 1 and 0 else.
Tight spans of splits are line segments, which are the simplest non-trivial polyhedral
complexes. There has been a lot of study on the splits of tight span and finite metric
spaces by Dress and his collaborators (see e.g., [4, 24, 25, 27]).

The crucial observation linking the theory of finite metric spaces with subdivisions
of polytopes is the following (see Sturmfels and Yu [91]): The tight span of a metric on
n points is dual to the complex of interior faces of the subdivision of a certain polytope,

7



8 1. INTRODUCTION AND SUMMARY

the second hypersimplex ∆(2, n). In view of this observation, we will generalize the
notion of tight spans to arbitrary polytopes and study the facets of SecPoly(P) in terms
of their possible tight spans. It turns out that tight spans of general regular subdivisions
can be fairly arbitrary; but there are several restrictions on the tight spans of facets of
the secondary polytope.

Not that obvious is the fact that also the notion of a split can be generalized to
general polytopes leading to the notion of a split of a convex polytope defined above.
This allows us to extend several results for splits of metrics to splits of convex polytopes.
The most important one is the Split Decomposition Theorem, which states that an
arbitrary weight function of a polytope P can be canonically decomposed into a sum
of split weight functions together with a split prime remainder. This result was also
obtained earlier by Hirai [50], who generalized the notion of split in a slightly different
context.

Given a set S of splits, we define it to be compatible if the hyperplanes that define the
splits do not meet in the interior of P and weakly compatible if the common refinement
of all splits in S is a valid subdivision of P without new interior points. The set of all
compatible splits gives rise to a simplicial complex, the split complex of P. We will
give a complete description of the compatibility relation of hypersimplices ∆(k, n), the
convex hull of all 0/1-vectors of length n with exactly k ones.

This general discussion about splits and tight spans will be carried out in Chapters 2∗

and 3. Despite the results already mentioned, we will give examples of splits and
compatibility relations for several polytopes, generalize the notion of splits to oriented
matroids, and discuss the arrangements of split hyperplanes. As an application to
tropical geometry, we will show that the split complex of ∆(k, n) is a subcomplex of the
Dressian Dr(k, n) (see below).

In Chapter 4†, we will study totally splittable polytopes, those polytopes for which
all triangulations can be obtained as refinements of splits. It turns out that a complete
classification is possible, and that the classes of polytopes obtained are exactly those
for which the secondary polytope was still known.

In Chapter 5, the theory of splits and tight spans is generalized from polytopes to
arbitrary point configurations. Most results can be also be obtained in this more general
setting, although at some points a bit more care is needed. We will further show that
any tight span occurring for a point configuration occurs for some polytope, too, and
that each polytope can be the tight span of some subdivision of another polytope.

Motivated by our results about splits, we start studying other facets of SecPoly(P)
in Chapter 6. If such a facet of SecPoly(P) has exactly k maximal cells, it is called a
k-subdivision. We will examine the tight spans of k-subdivisions for small k and give
some general necessary conditions for a polytopal complex that can appear as a tight
span of a k-subdivision. It turns out that the tight spans of general k-subdivisions can
be very complicated. Therefore, we define as a special class of k-subdivisions those
whose tight spans are simplices (of dimension k − 1). These are called k-splits. Since,
in this notion, splits are precisely 2-splits, we have a direct generalization of splits. A
thorough investigation of k-splits, even for fixed small k ≥ 3, is beyond the scope of this

∗Chapter 2 is joint work with Michael Joswig, published in Münster Journal of Mathematics [47].
†Chapter 4 is joint work with Michael Joswig [48].



1. INTRODUCTION AND SUMMARY 9

thesis; however, we believe that this would help a lot in understanding the structure of
secondary polytopes. For example, a classification of totally 3-splittable polytopes, as
it was done for totally splittable polytopes in Chapter 4, could lead to new interesting
classes of polytopes whose secondary polytope might be described explicitly.

The main topic of Chapter 7‡ is the investigation of two special tropical varieties,
the tropical Grassmannian and the Dressian. The tropical Grassmannian Gr(k, n) of
Speyer and Sturmfels [84] is the space of all (k−1)-dimensional tropical linear spaces in
tropical (n − 1)-dimensional space, so it is the tropical analogue of the Grassmannian.
The Dressian Dr(k, n) is the space of tropical Plücker vectors. It is closely related
to the tropical Grassmannian and can also be described as the space of all weight
vectors of ∆(k, n) that introduce so-called matroid subdivisions on ∆(k, n). These two
description give rise to two different fan structures. We will show that these structures
agree for k = 3, and that a matroid subdivision of ∆(3, n) uniquely corresponds to an
arrangement of n metric trees. Furthermore, we explicitly compute Gr(3, 7) and Dr(3, 7)
and give descriptions of the bounded parts of all combinatorial types of tropical planes in
6-space. These bounded parts are special tight spans of ∆(k, n). Whereas the dimension
of Gr(k, n) equals the dimension of the ordinary Grassmannian, which is well known,
the dimension of Dr(k, n) is not known in general. For the case k = 3, we will show that
dim(Dr(3, n)) is of order n2, much bigger than dim(Gr(3, n)), which is linear in n.

The thesis is concluded with a chapter on further topics and research directions in
connection with splits and subdivisions of polytopes. The topics are Ehrhart theory and
commutative algebra, finite metric spaces, quasi split subdivisions, and fiber polytopes.

‡Chapter 7 is joint work with Anders Jensen, Michael Joswig, and Bernd Sturmfels [45].





CHAPTER 2

Splitting Polytopes

This chapter is joint work with Michael Joswig, published in Münster Journal of
Mathematics [47].

2.1. Introduction

A real-valued weight function w on the vertices of a polytope P in Rd defines a
polytopal subdivision of P by way of lifting to Rd+1 and projecting the lower hull back
to Rd. The set of all weight functions on P has the natural structure of a polyhedral fan,
the secondary fan SecFan(P). The rays of SecFan(P) correspond to the coarsest (regular)
subdivisions of P. This chapter deals with the coarsest subdivisions with precisely two
maximal cells. These are called splits.

Hirai proved in [50] that an arbitrary weight function on P admits a canonical
decomposition as a linear combination of split weights with a split prime remainder.
This generalizes a classical result of Bandelt and Dress [4] on the decomposition of
finite metric spaces, which proved to be useful for applications in phylogenomics; e.g.,
see Huson and Bryant [54]. We give a new proof of Hirai’s split decomposition theorem
which establishes the connection to the theory of secondary fans developed by Gel′fand,
Kapranov, and Zelevinsky [40].

Our main contribution is the introduction and the study of the split complex of
a polytope P. This comes about as the clique complex of the graph defined by a
compatibility relation on the set of splits of P. A first example is the boundary complex
of the polar dual of the (n − 3)-dimensional associahedron, which is isomorphic to the
split complex of an n-gon. A focus of our investigation is on the hypersimplices ∆(k, n),
which are the convex hulls of the 0/1-vectors of length n with exactly k ones. We classify
all splits of the hypersimplices together with their compatibility relation. This describes
the split complexes of the hypersimplices.

Tropical geometry is concerned with the tropicalization of algebraic varieties. An
important class of examples is formed by the tropical Grassmannians Gr(k, n) of Speyer
and Sturmfels [84], which are the tropicalizations of the ordinary Grassmannians of
k-dimensional subspaces of an n-dimensional vector space (over some field). It is a
challenge to obtain a complete description of Gr(k, n) even for most fixed values of k
and n. A better behaved close relative of Gr(k, n) is the Dressian∗ Dr(k, n) arising from
tropicalizing the ideal of quadratic Plücker relations. This is a subfan of the secondary
fan of ∆(k, n), and its rays correspond to coarsest subdivisions of ∆(k, n) whose (maximal)
cells are matroid polytopes; see Kapranov [60] and Speyer [83]. As one of our main

∗In the original paper, the Dressian was called tropical pre-Grassmannian. See the introduction of
Chapter 7 for the motivation of the term Dressian.
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12 2. SPLITTING POLYTOPES

results, we prove that the split complex of ∆(k, n) is a subcomplex of Dr′(k, n), the

intersection of the fan Dr(k, n) with the unit sphere in R
(

n
k

)
. Moreover, we believe that

our approach can be extended further to obtain a deeper understanding of the Dressian;
see also Chapter 7.

This chapter is organized as follows. We start out with the investigation of general
weight functions of a polytope P and their coherence. Two weight functions are coherent
if there is a common refinement of the subdivisions that they induce on P. As an essential
technical device for the subsequent sections, we introduce the coherency index of two
weight functions on P. This generalizes the definition of Koolen and Moulton for ∆(2, n)
[65, Section 4.1].

The third section then deals with splits of polytopes and the corresponding weight
functions. As a first result we give a concise new proof of the split decomposition
theorems of Bandelt and Dress [4, Theorem 2] and Hirai [50, Theorem 2.2].

A split subdivision of the polytope P is clearly determined by the affine hyperplane
spanned by the unique interior cell of codimension one. A set of splits is compatible if no
two of the corresponding split hyperplanes meet in the (relative) interior of P. The split
complex Split(P) is the abstract simplicial complex of compatible sets of splits of P. It is
an interesting fact that the subdivision of P induced by a sum of weights corresponding
to a compatible system of splits is dual to a tree. In this sense, Split(P) can always be
seen as a “space of trees”.

In Section 2.5, we study the hypersimplices ∆(k, n). Their splits are classified and
explicitly enumerated. Moreover, we characterize the compatible pairs of splits. The
purpose of the short Section 2.6 is to specialize our results for arbitrary hypersimplices
to the case k = 2. A metric on a finite set of n points yields a weight function on ∆(2, n);
and hence all the previous results can be interpreted for finite metric spaces. This is
the classical situation studied by Bandelt and Dress [3, 4]. Notice that some of their
results had already been obtained by Isbell [55] much earlier.

Section 2.7 bridges the gap between the split theory of the hypersimplices and ma-
troid theory. This way, as one key result, we can prove that the split complex of the
hypersimplex ∆(k, n) is a subcomplex of the Dressian Dr′(k, n). We conclude this chapter
with a list of open questions.

2.2. Coherency of Weight Functions

Let P ⊂ Rd+1 be a polytope with vertices v1, . . . , vn. We form the n× (d + 1)-matrix V
whose rows are the vertices of P. For technical reasons, we make the assumption that P
is d-dimensional and that the (column) vector 1 := (1, . . . , 1) is contained in the linear
span of the columns of V. In particular, this implies that P is contained in some affine
hyperplane which does not contain the origin. A weight function w : Vert P → R of P
can be written as a vector in Rn. Now each weight function w of P gives rise to the
unbounded polyhedron

Ew(P) :=
{
x ∈ Rd+1

∣∣∣ V x ≥ −w
}
,

the envelope of P with respect to w. We refer to Ziegler [97] for details on polytopes.
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If w1 and w2 are both weight functions of P, then V x ≥ −w1 and Vy ≥ −w2 implies
V(x + y) ≥ −(w1 + w2). This yields the inclusion

(2.1) Ew1(P) + Ew2(P) ⊆ Ew1+w2(P) .

If equality holds in (2.1) then (w1,w2) is called a coherent decomposition of w = w1 + w2.
(Note that this must not be confused with the notion of “coherent subdivision” which
is sometimes used instead of “regular subdivision”.)

Example 2.1. We consider a hexagon H ⊂ R3 whose vertices are the columns of the
matrix

VT =


1 1 1 1 1 1
0 1 2 2 1 0
0 0 1 2 2 1



together with the three weight functions w1 = (0, 0, 1, 1, 0, 0), w2 = (0, 0, 0, 1, 1, 0), and
w3 = (0, 0, 2, 3, 2, 0). Again we identify a matrix with the set of its rows. A direct
computation then yields that w1 + w2 is not coherent, but both w1 + w3 and w2 + w3 are
coherent.

Each face of a polyhedron, that is, the intersection with a supporting hyperplane,
is again a polyhedron which can be bounded or not. A polyhedron is pointed if it does
not contain an affine subspace or, equivalently, its lineality space is trivial. This implies
that the set of all bounded faces is non-empty and forms a polytopal complex. This
polytopal complex is always contractible (see Hirai [49, Lemma 4.5]). The polytopal
complex of bounded faces of the polyhedron Ew(P) is called the tight span of P with
respect to w and is denoted by Tw(P).

Lemma 2.2. Let w = w1 + w2 be a decomposition of weight functions of P. Then the
following statements are equivalent.

(a) The decomposition (w1,w2) is coherent,
(b) Tw(P) ⊆ Tw1(P) + Tw2(P) ,
(c) Tw(P) ⊆ Ew1(P) + Ew2(P) ,
(d) each vertex of Tw(P) can be written as a sum of a vertex of Tw1(P) and a vertex

of Tw2(P).

For a similar statement in the special case where P is a second hypersimplex (see
Section 2.5 below); see Koolen and Moulton [64, Lemma 1.2].

Proof. If (w1,w2) is coherent then, by definition, Ew(P) = Ew1(P) + Ew2(P). Each
face F of the Minkowski sum of two polyhedra is the Minkowski sum of two faces F1, F2,
one from each summand. Now F is bounded if and only if F1 and F2 are bounded. This
proves that (a) implies (b).

Clearly, (b) implies (c). Moreover, (c) implies (d) by the same argument on Minkowski
sums as above.

To complete the proof, we have to show that (a) follows from (d). So assume that
each vertex of Tw(P) can be written as a sum of a vertex of Tw1(P) and a vertex of Tw2(P),
and let x ∈ Ew(P). Then x can be written as x = y + r where y ∈ Tw(P) and r is a ray
of Ew(P), that is, z + λr ∈ Ew(P) for all z ∈ Ew(P) and all λ ≥ 0. It follows that Vr ≤ 0.
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By assumption there are vertices y1 and y2 of Tw1(P) and Tw2(P) such that y = y1 + y2.
Setting x1 := y1 + r and x2 := y2 we have x = x1 + x2 with x2 ∈ Ew2(P). Computing

V x1 = V(y1 + r) ≤ Vy1 + Vr ≤ −w1 + 0 = −w1 ,

we infer that x1 ∈ Ew1(P). Hence w1 and w2 are coherent. �

We recall basic facts about cone polarity. For an arbitrary pointed polyhedron
X ⊂ Rd+1 there exists a unique polyhedral cone C(X) ⊂ Rd+2 such that

X =
{
x ∈ Rd+1

∣∣∣ (1, x) ∈ C(P)
}
.

If X is given in inequality description X =
{
x ∈ Rd+1

∣∣∣ Ax ≥ b
}
, one has

C(X) =

{
y ∈ Rd+2

∣∣∣∣∣∣
(

1 0
−b A

)
y ≥ 0

}
.

If X is given in a vertex-ray description P = conv V + pos R, one has

C(X) = pos
(
1 V
0 R

)
.

For any set M ⊆ Rd+2 its cone polar is defined as M◦ := {y ∈ Rd+2 | 〈x, y〉 ≥ 0 for all x ∈ M}.
If C = pos A is a cone, it is easily seen that C◦ = {y ∈ Rd+2 | Ay ≥ 0} and that (C◦)◦ = C.
The cone C◦ is called the polar dual cone of C. Two polyhedra X and Y are polar
duals if the corresponding cones C(X) and C(Y) are. The face lattices of dual cones are
anti-isomorphic.

For the following our technical assumptions from the beginning come into play.
Again let P be a d-polytope in Rd+1 such that 1 is contained in the column span of
the matrix V whose rows are the vertices of P. The standard basis vectors of Rd+1 are
denoted by e1, . . . , ed+1.

Proposition 2.3. The polyhedron Ew(P) is affinely equivalent to the polar dual of
the polyhedron

Lw(P) := conv {v + w(v)ed+1 | v ∈ Vert P} + R≥0ed+1 .

Moreover, the face poset of Tw(P) is anti-isomorphic to the face poset of the interior
lower faces (with respect to the last coordinate) of Lw(P).

Proof. Note first, that by our assumption that 1 is in the column span of V, up
to a linear transformation of Rd+1, we can assume that V = (V̄ ,1) for an n× d-matrix V̄.
This yields

C(Ew(P)) =

{
x ∈ Rd+2

∣∣∣∣∣∣
(
1 0 0
w V̄ 1

)
x ≥ 0

}
.

On the other hand, we have

C(Lw(P)) = pos
(
1 V̄ w
0 0 1

)
,

which is linearly isomorphic to C̄ = pos
(

w 1 V̄
1 0 0

)
by a coordinate change, so Ew(P)

and Lw(P) are polar duals, up to linear transformations.
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This way we have obtained an anti-isomorphism of the face lattices of C(Ew(P))
and C(Lw(P)). A face F of Ew(P) is bounded if and only if no generator of C(Ew(P)) with
first coordinate equal to zero is smaller then F in the face lattice. In the dual view, this
means that the corresponding face F′ of Lw(P) is greater then a facet which is parallel to
the last coordinate axis in the face lattice of C(Lw(P)). But this exactly means that F′

is a lower face. So the lattice anti-isomorphism of C(Ew(P)) and C(Lw(P)) induces a
poset anti-isomorphism between Tw(P) and the interior lower faces of Lw(P). �

The lower faces of Lw(P) (with respect to the last coordinate) are precisely its
bounded faces. Being projected back to aff P in the ed+1-direction, the polytopal com-
plex of bounded faces of Lw(P) induces a polytopal decomposition Σw(P) of P. Note that
we only allow the vertices of P as vertices of any subdivision of P. A polytopal subdi-
vision which arises in this way is called regular. Two weight functions are equivalent if
they induce the same subdivision. This allows for one more characterization extending
Lemma 2.2.

Corollary 2.4. A decomposition w = w1 + w2 of weight functions of P is coherent
if and only if the subdivision Σw(P) is the common refinement of the subdivisions Σw1(P)
and Σw2(P).

Proof. By Lemma 2.2, the decomposition w1 + w2 is coherent if and only if each
vertex x of Tw(P) is a sum of a vertex x1 of Tw1(P) and a vertex x2 of Tw2(P). In
terms of the duality proved in Proposition 2.3, the vertex x corresponds to the maximal
cell Fw(x) := conv{v ∈ Vert P | 〈v, x〉 = −w} of Σw(P). Similarly, x1 and x2 corresponds
to the cells Fw1(x1) and Fw2(x2) of Σw1(P) and Σw2(P), respectively. In fact, we have
Fw(x) = Fw1(x1) ∩ Fw2(x2), and so Σw(P) is the common refinement of Σw1(P) and Σw2(P).
The converse follows similarly. �

Example 2.5. In Example 2.1, the tight spans of the three weight functions of the
hexagon are line segments:

Tw1(H) = [0, (1,−1, 0)] , Tw2(H) = [0, (1, 0,−1)] , and Tw3(H) = [0, (1,−1,−1)] .

Remark 2.6. Interesting special cases of tight spans include the following. Finite
metric spaces (on n points) give rise to weight functions on the second hypersimplex
P = ∆(2, n). In this case, the tight span can be interpreted as a“space”of trees which are
candidates to fit the given metric. This has been studied by Bandelt and Dress [4], and
this is the context in which the name “tight span” was used first. See also Section 2.6
and Section 8.2 below.

If P is a product of two simplices, the tight span of a lifting function gives rise to
a tropical polytope introduced by Develin and Sturmfels [21], the cells in the resulting
regular decomposition of P are the polytropes of [59].

If P spans the affine hyperplane x1 = 1 and if we consider the weight function defined
by w(v) = v2

2 +v2
3 + · · ·+v2

d+1 for each vertex v of P, then the tight span Tw(P) is isomorphic
to the subcomplex of bounded faces of the Voronoi diagram of Vert P. All maximal cells
of the Voronoi diagram are unbounded and hence the tight span is at most (d − 1)-
dimensional. The subdivision Σw(P) is then isomorphic to the Delone decomposition
of Vert P.
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Let w and w′ be weight functions of our polytope P. We want to have a measure
that expresses to what extent the pair of weight functions (w′,w − w′) deviates from
coherence (if at all). The coherency index of w with respect to w′ is defined as

(2.2) αw
w′ := min

x∈Vert Ew(P)

{
max

x′∈Vert Ew′ (P)

{
min

v∈Vw′ (x′)

{ 〈v, x〉 + w(v)
〈v, x′〉 + w′(v)

}}}
,

where Vw′(x′) = {v ∈ Vert P | 〈v, x′〉 , −w′(v)}. (That is, Vw′(x′) is the set of vertices of P
that are not contained in the cell dual to x.) The name is justified by the following
observation, which generalizes Koolen and Moulton [65, Theorem 4.1].

Proposition 2.7. Let w and w′ be weight functions of the polytope P. Moreover,
let λ ∈ R and w̃ := w − λw′. Then w = w̃ + λw′ is coherent if and only if 0 ≤ λ ≤ αw

w′.

Proof. Assume that w = w̃ + λw′ is coherent. By Lemma 2.2, for each vertex x
of Ew(P) there is a vertex x′ of Ew′(P) such that x − λx′ is a vertex of Ew̃(P). We arrive
at the following sequence of equivalences:

x − λx′ ∈ Tw̃(P) ⇐⇒ −w(v) + λw′(v) ≤ 〈v, x − λx′〉 for all v ∈ Vert P

⇐⇒ λ(〈v, x′〉 + w′(v)) ≤ 〈v, x〉 + w(v) for all v ∈ Vert P

⇐⇒ λ ≤ 〈v, x〉 + w(v)
〈v, x′〉 + w′(v)

for all v ∈ Vw′(x′)

⇐⇒ λ ≤ min
v∈Vw′ (x′)

{ 〈v, x〉 + w(v)
〈v, x′〉 + w′(v)

}
.

For each vertex x of Ew(P) there must be some vertex x′ of Ew′(P) such that these
inequalities hold, and this gives the claim. �

Corollary 2.8. For two weight function w and w′ of P we have

αw
w′ = sup {λ ≥ 0 | (w − λw′, λw′) is a coherent decomposition of w} .

Corollary 2.9. If w and w′ are weight functions, then Σw(P) = Σw′(P) if and only
if αw

w′ > 0 and αw′
w > 0.

The set of all regular subdivisions of the convex polytope P is known to have an
interesting structure (see [19, Chapter 5] for the details): For a weight function w ∈ Rn

of P we consider the set S [w] ⊂ Rn of all weight functions that are equivalent to w,
that is,

S [w] := {x ∈ Rn |Σx(P) = Σw(P)} .
This set is called the secondary cone of P with respect to w. It can be shown (see e.g.,
[19, Corollary 5.2.10]) that S [w] is indeed a polyhedral cone and that the set of all S [w]
(for all w) forms a polyhedral fan SecFan(P), called the secondary fan of P.

It is easily verified that S [0] is the set of all (restrictions of) affine linear functions
and that it is the lineality space of every cone in the secondary fan. So this fan can
be regarded in the quotient space Rn/S [0] � Rn−d−1. If there is no chance for confusion,
we will identify w ∈ Rn and its image in Rn/S [0]. Furthermore, the secondary fan can
be cut with the unit sphere to get a (spherical) polytopal complex on the set of rays
in the fan. This complex carries the same information as the fan itself and will also be
identified with it.
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It is a famous result by Gel′fand, Kapranov, and Zelevinsky [40, Theorem 1.7] that
the secondary fan is the normal fan of a polytope, the secondary polytope SecPoly(P) of P.
This polytope admits a realization as the convex hull of the so-called GKZ-vectors of
all (regular) triangulations of P. The GKZ-vector x∆ ∈ Rn of a triangulation Σ is defined
as (xΣ)v :=

∑
S vol S for all v ∈ Vert P, where the sum ranges over all full-dimensional

simplices S ∈ Σ which contain v.
A description in terms of inequalities is given by Lee [68, Section 17.6, Result 4]:

The affine hull of SecPoly(P) ⊂ Rn is given by the d + 1 equations

(2.3)

∑

v∈Vert P

xv = d(d + 1) vol P and

∑

v∈Vert P

xvv = ((d + 1) vol P) · cP ,

where cP denotes the centroid of P and vol the d-dimensional volume in the affine span
of P, which we can identify with Rd. The facet defining inequalities of SecPoly(P) are

∑

v∈Vert P

w(v)xv ≥ (d + 1)
∑

Q∈Σw(P)

vol Q · w?(cQ) ,(2.4)

for all coarsest regular subdivisions Σw(P) defined by a weight w. Here w? : P 7→ R
denotes the piecewise-linear convex function whose graph is given by the lower facets
of Lw(P).

A weight function w such that for all weight functions w′ with αw
w′ > 0 we have

w′ = λw (in Rn/S [0]) for some λ > 0 is called prime. The set of all prime weight
functions for a given polytope P is denoted W(P). By this we get directly:

Proposition 2.10. The equivalence classes of prime weights correspond to the ex-
tremal rays of the secondary fan (and hence to the coarsest regular subdivisions or,
equivalently, to the facets of the secondary polytope).

The following is a reformulation of the fact that the set of all equivalence classes of
weight functions of P forms a fan (the secondary fan of P).

Theorem 2.11. Each weight function w on a polytope P can be decomposed into a
coherent sum of prime weight functions, that is, there are p1, . . . , pk ∈ W(P) such that
w = p1 + · · · + pk is a coherent decomposition.

Proof. Each weight function w is contained in some cone of the secondary fan of P.
Hence there are extremal rays r1, . . . , rk of the secondary cone and positive real numbers
λ1, . . . , λk such that w = λ1r1 + · · ·+λkrk; by construction, this decomposition is coherent
by Lemma 2.2. From Proposition 2.10 we know that pi := λiri is a prime weight, and
the claim follows. �

Note that this decomposition is usually not unique.
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2.3. Splits and the Split Decomposition Theorem

A split S of a polytope P is a decomposition of P without new vertices which has
exactly two maximal cells denoted by S + and S −. As above, we assume that P ⊂ Rd+1 is
d-dimensional and that aff P does not contain the origin. Then the linear span of S +∩S −
is a linear hyperplane HS , the split hyperplane of S with respect to P. Since S does not
induce any new vertices, in particular, HS does not meet any edge of P in its relative
interior. Conversely, each hyperplane which separates P and which does not separate
any edge defines a split of P. Furthermore, it is easy to see that a hyperplane defines a
split of P if and only if it defines a split on all facets of P that it meets in the (relative)
interior. (Note: In the sequel, we will frequently write “interior” instead of “relative
interior” if there is no chance for confusion.)

The following observation is immediate. Note that it implies that a hyperplane
defines a split if and only if its does not separate any edge.

Observation 2.12. A hyperplane that meets P in its interior is a split hyperplane
of P if and only if it intersects each of its facets F in either a split hyperplane of F or
in a face of F.

Remark 2.13. Since the notion of facets and faces of a polytope only depends on the
oriented matroid of P it follows from Observation 2.12 that the set splits of a polytope
only depend on the oriented matroid of P. This is in contrast to the fact that the set of
regular triangulations (see below), in general, depends on the specific coordinatization.
See also Section 3.5 for a discussion of oriented matroids.

The running theme of this thesis is: If a polytope admits sufficiently many splits,
then interesting things happen. However, one should keep in mind that there are many
polytopes without a single split; such polytopes are called unsplittable.

Remark 2.14. If v is a vertex of P such that all neighbors of v in P are contained
in a common hyperplane Hv then Hv defines a split S v of P. Such a split is called the
vertex split with respect to v. For instance, if P is simple then each vertex defines a
vertex split.

Since polygons are simple polytopes it follows, in particular, that an unsplittable
polytope which is not a simplex is at least three-dimensional. An unsplittable 3-polytope
has at least six vertices. An example is a three-dimensional cross polytope whose vertices
are perturbed into general position.

Proposition 2.15. Each 2-neighborly polytope is unsplittable.

Proof. Assume that S is a split of a 2-neighborly polytope P. Recall that this
property means that any two vertices of P are joined by an edge. Choose vertices
v ∈ S + \ S − and w ∈ S − \ S +. Then the segment [v,w] is an edge of P which is separated
by the split hyperplane HS . This is a contradiction to the assumption that S was a split
of P. �

It is clear that splits yield coarsest subdivisions; but the following lemma says that
they even define facets of the secondary polytope.

Lemma 2.16. Splits are regular.
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Proof. Let S be a split of P. We have to show that S is induced by a weight func-
tion. Let a be a normal vector of the split hyperplane HS . We define wS : Vert(P)→ R by

(2.5) wS (v) :=


|〈a, v〉| if v ∈ S + ,

0 if v ∈ S − .

Note that this function is well-defined since for v ∈ HS = lin(S + ∩ S −) we have av = 0.
It is now obvious that w induces the split S on P. �

Example 2.17. In Example 2.1 the three weight functions w1, w2, w3 define splits
of the hexagon H.

By specializing Equation (2.4), a facet defining inequality for the split S is given by∑

v∈Vert S +

|〈a, v〉|xv ≥ |〈a, cS +
〉| (d + 1) vol S + .(2.6)

Note that a is a normal vector of the split hyperplane HS as above, and cS +
is the cen-

troid of the polytope P∩S +. By taking the inequalities (2.6) for all splits S of P together
with the equations (2.3), we get an (n−d−1)-dimensional polyhedron SplitPoly(P) which
we will call the split polyhedron of P. Obviously, we have SecPoly(P) ⊆ SplitPoly(P) so
the split polyhedron can be seen as an outer “approximation”of the secondary polytope.
In fact, by Remark 2.13, SplitPoly(P) is a common “approximation” for the secondary
polytopes of all possible coordinatizations of the oriented matroid of P. If P has suffi-
ciently many splits, the split polyhedron is bounded; in this case, SplitPoly(P) is called
the split polytope of P.

One can show that each simple polytope has a bounded split polyhedron. Here we
give two examples.

Example 2.18. Let P be a an n-gon for n ≥ 4. Then each pair of non-neighboring
vertices defines a split of P. Each triangulation of P is regular and, moreover, a split
triangulation.

The secondary polytope of P is the associahedron Assocn−3, which is a simple poly-
tope of dimension n−3. Since the only coarsest subdivisions of P are the splits it follows
that the split polytope of P coincides with its secondary polytope.

Example 2.19. The 74 triangulations of the regular 3-cube C3 = [−1, 1]3 are all
regular, and 26 of them are induced by splits. The total number of splits is 14: There
are eight vertex splits (C being simple) and six splits defined by parallel pairs of diagonals
in an opposite pair of cube facets. The secondary polytope of C is a 4-polytope with
f -vector (74, 152, 100, 22); see Pfeifle [75] for a complete description.

The split polytope of C3 is neither simplicial nor simple and its f -vector reads
(22, 60, 52, 14). A Schlegel diagram is shown in Figure 2.1.

Example 2.20. There are nearly 88 million regular triangulations of the 4-cube
C4 = [−1, 1]4 that come in 235, 277 equivalence classes. The 4-cube has four different
types of splits: The vertex splits, the split obtained by cutting with H := {x | ∑ xi = 0}
(and its images under the symmetry group of the cube), and, finally, two kinds of splits
induced by the two kinds of splits of the 3-cube. The split obtained from the vertex split
of the 3-cube is the one discussed in [53, Example 20 (The missing split)]. See also [53]
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for a complete discussion of the secondary polytope of C4. Examples of triangulations
of the 4-cube that are induced by splits include the first two in [53, Example 10 &
Figure 3] and the one whose tight span is shown in Figure 2.4.

Figure 2.1. Schlegel diagram of the split polytope of the regular 3-cube.

A weight function w on a polytope P is called split prime if for all splits S of P we
have αw

wS
= 0. The following can be seen as a generalization of Bandelt and Dress [4,

Theorem 2], and as a reformulation of Hirai’s Theorem 2.2 [50].

Theorem 2.21 (Split Decomposition Theorem). Each weight function w has a co-
herent decomposition

(2.7) w = w0 +
∑

S split of P

λS wS ,

where w0 is split prime, and this is unique among all coherent decompositions of w.

This is called the split decomposition of w.

Proof. We first consider the special case where the subdivision Σw(P) induced by w
is a common refinement of splits. Then each face F of codimension one in Σw(P) defines
a unique split S (F), namely the one with split hyperplane HS (F) = lin F. Moreover,
whenever S is an arbitrary split of P, then αw

wS
> 0 if and only if HS ∩ P is a face

of Σw(P) of codimension one. This gives a coherent subdivision w =
∑

S α
w
wS

wS , where
the sum ranges over all splits S of P. Note that the uniqueness follows from the fact
that for each codimension-one-faces of Σw(P) there is a unique split which coarsens it.

For the general case, we let

w0 := w −
∑

S split of P

αw
wS

wS .

By construction, w0 is split prime, and the uniqueness of the split decomposition of w
follows from the uniqueness of the split decomposition of w − w0. �
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In fact, the sum in (2.7) only runs over all splits in S(w) := {wS |αw
wS

> 0}. The
uniqueness part of the theorem gives us the following interesting corollary (see also
Bandelt and Dress [4, Corollary 5], and Hirai [50, Proposition 3.6]):

Corollary 2.22. For a weight function w the set S(w)∪{w0} is linearly independent.
In particular, |S(w)| ≤ n−d−1, if |S(w)| = n−d−1 then w0 = 0, and if |S(w)| = n−d−2
then w0 is a prime weight function.

Proof. Suppose the set would be linearly dependent. This would yield a relation
∑

S∈S
λS wS = λ0w0 +

∑

S∈S(w)\S
λS wS

with coefficients λ0, λS ≥ 0 for some S ⊂ S(w). However, this contradicts the uniqueness
part of Theorem 2.21 for the weight function w′ :=

∑
S∈S λS wS .

The cardinality constraints now follow from the fact that the weight functions live
in Rn/S [0] � Rn−d−1. �

The next lemma is a specialization of Corollary 2.4 to the case of splits and their
weight functions.

Lemma 2.23. Let S be a set of splits for P. Then the following statements are
equivalent.

(a) The corresponding decomposition w :=
∑

S∈S wS is coherent,
(b) there exists a common refinement of all S ∈ S (induced by w),
(c) there is a regular triangulation of P which refines all S ∈ S.

Instead of “set of splits” we equivalently use the term split system. A split system is
called weakly compatible if one of the properties of Lemma 2.23 is satisfied. Moreover,
two splits S 1 and S 2 such that HS 1 ∩ HS 2 does not meet P in its interior are called
compatible. This notion generalizes to arbitrary split systems in different ways: A set
S of splits is called compatible if any two of its splits are compatible. It is incompatible
any two splits are not compatible, and it is totally incompatible if

⋂
S∈S HS has a non-

empty intersection with the interior of P. It is clear that total incompatibility implies
incompatibility, and that compatibility implies weak compatibility (but the converse
does not hold, see Example 2.34).

For an arbitrary split system S we define its weight function as

wS :=
∑

S∈S
wS .

If S is weakly compatible then ΣS(P) := ΣwS(P) is the coarsest subdivision refining all
splits in S. We further abbreviate ES(P) := EwS(P) and TS(P) := TwS(P).

Remark 2.24. The split decomposition (2.7) of a weight function w of the d-
polytope P can actually be computed using our formula (2.2). Provided we already
know the, say, t vertices of the tight span of w and the, say, s splits of P, this takes
O(s t d n) arithmetic operations over the reals (or the rationals), where n = |Vert P|.
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2.4. Split Complexes and Split Subdivisions

Let P be a fixed d-polytope, and let S(P) be the set of all splits of P. The notions
of compatibility and weak compatibility of splits give rise to two abstract simplicial
complexes with vertex set S(P). We denote them by Split(P) and Splitw(P), respectively.
Since compatibility implies weak compatibility Split(P) is a subcomplex of Splitw(P).
Moreover, if S ⊆ S(P) is a split system such that any two splits in S are compatible,
then the whole split system S is compatible. This can also be phrased in graph theory
language: The compatibility relation among the splits defines an undirected graph,
whose cliques correspond to the faces of Split(P). In particular, we have the following:

Proposition 2.25. The split complex Split(P) is a flag simplicial complex.

Note that we did not assume that P admits any split. If P is unsplittable then the
(weak) split complex of P is the void complex ∅.

Theorem 2.21 tells us that the fan spanned by the rays that induce splits is a
simplicial fan contained in (the support of) SecFan(P). This fan was called the split fan
of P by Koichi [63]. Denoting by SecFan′(P) the (spherical) polytopal complex which
arises from SecFan(P) by intersecting with the unit sphere, we arrive at the following
observation:

Corollary 2.26. The simplicial complex Split(P) is a subcomplex of the polytopal
complex SecFan′(P).

Proof. The tight span of a compatible system S of splits of P is a tree by Propo-
sition 2.30. This implies that the cell C in SecFan′(P) generated by S does not contain
vertices whose tight span is of dimension greater than one. Thus the vertices of C are
precisely the splits in S. �

Remark 2.27. The weak split complex of P is usually not a subcomplex of SecFan′(P);
see Example 2.34. However, one can show that Splitw(P) is homotopy equivalent to a
subcomplex of SecFan′(P).

From Corollary 2.22 we can trivially derive an upper bound on the dimensions of
the split complex and the weak split complex. This bound is sharp for both types of
complexes as we will see in Example 2.32 below.

Proposition 2.28. The dimensions of Split(P) and Splitw(P) are bounded from above
by n − d − 2.

A regular subdivision (triangulation) Σ of P is called a split subdivision (triangu-
lation) if it is the common refinement of a set S of splits of P. Necessarily, the split
system S is weakly compatible and a face of Splitw(P). Conversely, all faces of Splitw(P)
arise in this way.

Corollary 2.29. If S is a facet of Splitw(P) with |S| = n − d − 1, then the split
subdivision ΣS(P) is a split triangulation.

Proof. Corollary 2.22 implies that W := {wS | S ∈ S} is linearly independent and
hence a basis of Rn/S [0] � Rn−d−1. So the cone spanned by W is full-dimensional and
hence corresponds to a vertex of the secondary polytope. �
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The following is a characterization of the faces of Split(P) and says that split com-
plexes are always “spaces of trees”.

Proposition 2.30 (Hirai [50], Proposition 2.9). Let S be a split system on P. Then
the following statements are equivalent.

(a) S is compatible,
(b) TS(P) is one-dimensional, and
(c) TS(P) is a tree.

Proof. Assume that ΣS(P) is induced by the compatible split system S , ∅. By
definition, for any two distinct splits S 1, S 2 ∈ S the hyperplanes HS 1 and HS 2 do not
meet in the interior of P. This implies that there are no interior faces in ΣS(P) of
codimension greater than one. By Proposition 2.3, this says that dim TS(P) ≤ 1. Since
S , ∅ we have that dim TS(P) = 1. Thus (a) implies (b).

The statement (c) follows from (b) as the tight span is contractible.
Suppose that TS(P) is a tree. Then each edge is dual to a split hyperplane. The

system S of all these splits is clearly weakly compatible since it is refined by ΣS(P).
Assume that there are splits S 1, S 2 ∈ S such that the corresponding split hyperplanes HS 1

and HS 2 meet in the interior of P. Then HS 1 ∩ HS 2 is an interior face in ΣS(P) of
codimension two, contradicting our assumption that TS(P) is a tree. This proves (a),
and hence the claim follows. �

Remark 2.31. A d-dimensional polytope is called stacked if it has a triangulation
without interior faces of dimension less than d − 1. So it follows from Proposition 2.30
that a polytope is stacked if and only if there exists a split triangulation induced by a
compatible system of splits.

Example 2.32. Let P be a an n-gon for n ≥ 4. As already pointed out in Exam-
ple 2.18, each pair of non-neighboring vertices defines a split of P. Two such splits are
compatible if and only if they are weakly compatible.

The secondary polytope of P is the associahedron Assocn−3, and the split complex
of P is isomorphic to the boundary complex of its dual. In particular, Split(P) = Splitw(P)
is a pure and shellable simplicial complex of dimension n − 4, which is homeomorphic
to Sn−4. This shows that the bound in Proposition 2.28 is sharp. From Catalan combi-
natorics it is known that the (split) triangulations of P correspond to the binary trees
on n − 2 nodes; see [19, Section 1.1].

Example 2.33. The splits of the regular cross polytope Xd = conv{±e1,±e2, . . . ,±ed}
in Rd are induced by the d reflection hyperplanes xi = 0. Any d − 1 of them are weakly
compatible and define a triangulation of Xd by Corollary 2.29. (Of course, this can also
be seen directly.) All triangulations of Xd arise in this way. This shows that Splitw(Xd)
is isomorphic to the boundary complex of a (d − 1)-dimensional simplex, which is also
the secondary polytope and the split polytope of Xd. Any two reflection hyperplanes
meet in the interior of Xd, whence no two splits are compatible. This says that Split(Xd)
consists of d isolated points.

Example 2.34. As we already discussed in Example 2.19 the 3-cube C3 = [−1, 1]3

has a total number of 14 splits. The split complex Split(C) is three-dimensional but
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not pure; its f -vector reads (14, 40, 32, 2). The two three-dimensional facets corre-
spond to the two non-unimodular triangulations of C (arising from splitting every
other vertex). The reduced homology is concentrated in dimension two, and we have
H2(Split(C3);Z) � Z3. The graph indicating the compatibility relation among the splits
is shown in Figure 2.2.

Figure 2.3 shows three triangulations of C3. The left one is generated by a totally
incompatible system of three splits; that is, it is a facet of Splitw(C3) which is not a
face of Split(C3). The right one is (not unimodular and) generated by a compatible split
system (of four vertex splits); that is, it is a facet of both Split(C3) and Splitw(C3). The
middle one is not generated by splits at all.

The triangulation Σ on the left uses only three splits. This examples shows that
the converse of Corollary 2.29 is not true, that is, a weakly compatible split system
that defines a triangulation does not have to be maximal with respect to cardinality.
Furthermore, the triangulation Σ can also be obtained as the common refinement of two
non-split coarsest subdivisions. The cell in SecFan′(C3) corresponding to Σ is a bipyra-
mid over a triangle. The vertices of this triangle (which is not a face of SecFan′(C3))
correspond to the three splits, so the relevant cell in Splitw(C3) is a triangle, and the
apices corresponds to the non-split coarsest subdivisions mentioned above. Since the
three splits are totally incompatible there does not exist a corresponding face in Split(C3),
and the intersection with Split(C3) consists of three isolated points.

Figure 2.2. Compatibility graph of the splits of the regular 3-cube. The
four (gray) nodes to the left and the four (gray) nodes to the right corre-
spond to the vertex splits.

A polytopal complex is zonotopal if each face is zonotope. A zonotope is the
Minkowski sum of line segments or, equivalently, the affine projection of a regular cube.
Any graph, that is, a one-dimensional polytopal complex, is zonotopal in a trivial way.
So especially tight spans of splits and, by Proposition 2.30, of compatible splits systems
are zonotopal. In fact, this is even true for arbitrary weakly compatible splits systems.
See also Bolker [14, Theorem 6.11] and Hirai [50, Corollary 2.8].
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Theorem 2.35. Let S be a weakly compatible split system on P. Then the tight
span TS(P) is a (not necessarily pure) zonotopal complex.

Proof. Let F be a face of TS(P). Since by Lemma 2.23 we have ES(P) =
∑

S∈S EwS (P),
we get (by the same arguments used in the proof of Lemma 2.2) that F =

∑
S∈S FS for

faces FS of TwS (P). The claim now follows from the fact that TwS (P) is a line segment
for all S ∈ S. �

A triangulation of a d-polytope is foldable if its vertices can be colored with d
colors such that each edge of the triangulation receives two distinct colors. This is
equivalent to requiring that the dual graph of the triangulation is bipartite; see [58,
Corollary 11]. Note that foldable simplicial complexes are called “balanced” in [58].
The three triangulations of the regular 3-cube in Figure 2.3 are foldable.

Figure 2.3. Three foldable triangulations of the regular 3-cube.

Corollary 2.36. Each split triangulation is foldable.

Proof. Let S be a weakly compatible split system such that ΣS(P) is a triangula-
tion. By Theorem 2.35, each two-dimensional face of the tight span TS(P) has an even
number of vertices. This implies that ΣS(P) is a triangulation of P such that each of its
interior codimension-two-cell is contained in an even number of maximal cells. Now the
claim follows from [58, Corollary 11]. �

Example 2.37. Let C4 be the four-dimensional cube. In Figure 2.4 there is a
picture of the tight span TS(C4) of a split system S of C4 with ten weakly compatible
splits. As proposed by Theorem 2.35 the complex is zonotopal. It is three-dimensional
and its f -vector reads (24, 36, 14, 1). The number of vertices equals 24 = 4! which is the
normalized volume of C4, and hence ΣS(C4) is, in fact, a triangulation. By Corollary 2.36,
this triangulation is foldable.

2.5. Hypersimplices

We abbreviate [n] := {1, 2, . . . , n} and
(

[n]
k

)
:= {X ⊆ [n] | |X| = k}, as a notational

shorthand. The k-th hypersimplex in Rn is defined as

∆(k, n) :=

x ∈ [0, 1]n

∣∣∣∣∣∣∣
n∑

i=1

xi = k

 = conv


∑

i∈A

ei

∣∣∣∣∣∣∣ A ∈
(
[n]
k

) .
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Figure 2.4. The tight span of a split triangulation of the 4-cube.

It is (n − 1)-dimensional and satisfies the conditions of Section 2.2. Throughout the
following, we assume that n ≥ 2 and 1 ≤ k ≤ n − 1.

A hypersimplex ∆(1, n) is an (n − 1)-dimensional simplex. For arbitrary k ≥ 1 we
have ∆(k, n) � ∆(n − k, n). Moreover, for p ∈ [n] the equation xp = 0 defines a facet
isomorphic to ∆(k, n − 1). And, if k ≥ 2, the equation xp = 1 defines a facet isomorphic
to ∆(k − 1, n − 1). This list of facets (induced by the facets of [0, 1]n) is exhaustive. Since
the hypersimplices are not full-dimensional, the facet defining (affine) hyperplanes are
not unique. For the following it will be convenient to work with linear hyperplanes.
This way xp = 1 gets replaced by

(2.8) (k − 1)xp =
∑

i∈[n]\{p}
xi .

The triplet (A, B; µ) with ∅ , A, B ( [n], A ∪ B = [n], A ∩ B = ∅, and µ ∈ N defines
the linear equation

(2.9) µ
∑

i∈A

xi = (k − µ)
∑

i∈B

xi .

The corresponding (linear) hyperplane in Rn is called the (A, B; µ)-hyperplane. Clearly,
(A, B; µ) and (B, A; k−µ) define the same hyperplane. Equation (2.8) corresponds to the
({p}, [n] \ {p}; k − 1)-hyperplane.

Lemma 2.38. The (A, B; µ)-hyperplane is a split hyperplane of ∆(k, n) if and only if
k − µ + 1 ≤ |A| ≤ n − µ − 1 and 1 ≤ µ ≤ k − 1.

Proof. It is clear that the (A, B; µ)-hyperplane does not meet the interior of ∆(k, n)
if µ ≤ 0 or if µ ≥ k. Especially, we may assume that k ≥ 2.

Suppose now that |A| ≤ k − µ. Then each point x ∈ ∆(k, n) satisfies
∑

i∈A xi ≤ k − µ
and

∑
i∈B xi ≥ k − (k − µ) = µ. This implies that µ

∑
i∈A xi ≤ (k − µ)

∑
i∈B xi, which says

that all points in ∆(k, n) are contained in one of the two halfspaces defined by the
(A, B; µ)-hyperplane. Hence it does not define a split. A similar argument shows that
|A| ≤ n − µ − 1 is necessary in order to define a split.

Conversely, assume that k − µ + 1 ≤ |A| ≤ n − µ − 1 and 1 ≤ µ ≤ k − 1. We define a
point x ∈ ∆(k, n) by setting

xi :=


k−µ
|A| , if i ∈ A ,
µ

|B| , if i ∈ B .
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Since 0 < k−µ
|A| < 1 and 0 < µ

|B| < 1 the point x is contained in the (relative) interior

of ∆(k, n). Moreover, x satisfies Equation (2.9), and so the (A, B; µ)-hyperplane passes
through the interior of ∆(k, n).

It remains to show that the (A, B; µ)-hyperplane does not separate any edge. Let

v and w be two adjacent vertices. So we have some {p, q} ∈
(

[n]
2

)
with v − w = ep − eq.

Aiming at an indirect argument, we assume that v and w are on opposite sides of the
(A, B; µ)-hyperplane, that is, without loss of generality µ

∑
i∈A vi > (k − µ)

∑
i∈B vi and

µ
∑

i∈A wi < (k − µ)
∑

i∈B wi. This gives

0 < µ
∑

i∈A

vi − (k − µ)
∑

i∈B

vi = µ(χA(p) − χA(q))

and

0 < (k − µ)
∑

i∈B

wi − µ
∑

i∈A

wi = (k − µ)(χB(p) − χB(q)) ,

where characteristic functions are denoted as χ·(·). Since µ > 0 and µ < k it follows that
χA(q) < χA(p) and χB(q) < χB(p). Now the characteristic functions take values in {0, 1}
only, and we arrive at χA(q) = χB(q) = 0 and χA(p) = χB(p) = 1. Both these equations
contradict the fact that (A, B) is a partition of [n]. So we conclude that, indeed, the
(A, B; µ)-hyperplane defines a split. �

This allows to characterize the splits of the hypersimplices.

Proposition 2.39. Each split hyperplane of ∆(k, n) is defined by a linear equation
of the type (2.9).

Proof. Using Observation 2.12 and exploiting the fact that facets of hypersimplices
are hypersimplices, we can proceed by induction on n and k as follows.

Our induction is based on the case k = 1. Since ∆(1, n) is an (n − 1)-simplex, which
does not have any splits, the claim is trivially satisfied. The same holds for k = n− 1 as
∆(n − 1, n) � ∆(1, n).

For the rest of the proof we assume that 2 ≤ k ≤ n − 2. In particular, this implies
that n ≥ 4.

Let
∑

i∈[n] αixi = 0 define a split hyperplane H of ∆(k, n). The facet defining hyper-
plane Fp = {x | xp = 0} is intersected by H, and we have

Fp ∩ H =

{
x ∈ Rn

∣∣∣∣∣
∑

i∈[n]\{p}
αixi = 0 = xp

}
.

Three cases arise:

(a) Fp ∩ H is a facet of Fp ∩ ∆(k, n) � ∆(k, n − 1) defined by xq = 0 (with q , p),
(b) Fp ∩ H is a facet of Fp ∩ ∆(k, n) � ∆(k, n − 1) as defined by Equation (2.8), or
(c) Fp ∩ H defines a split of Fp ∩ ∆(k, n) � ∆(k, n − 1).

If Fp∩H is of type (a), then αi = 0 for all i , p and αp , 0. As not all the αi can vanish
there is at most one p ∈ [n] such that Fp ∩ H is of type (a). Since assumed that n ≥ 4
there are at least two distinct p, q ∈ [n] such that Fp ∩ H and Fq ∩ H are of type (b)
or (c). By symmetry, we can further assume that p = 1 and q = n. So we get a partition
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(A, B) of [n − 1] and a partition (A′, B′) of {2, 3, . . . , n} with µ, µ′ ∈ N such that F1 ∩ H is
defined by x1 = 0 and

µ
∑

i∈A

xi = (k − µ)
∑

i∈B

xi ,

while Fn ∩ H is defined by xn = 0 and

µ′
∑

i∈A′
xi = (k − µ′)

∑

i∈B′
xi .

We infer that there is a real number λ such that αi = λµ for all i ∈ A, αi = λ(k − µ) for
all i ∈ B. It remains to show that αn ∈ {λµ, λ(k− µ)}. Similarly, there is a real number λ′

such that αi = λ′µ′ for all i ∈ A′, αi = λ′(k−µ′) for all i ∈ B′. As n ≥ 4 we have A∩A′ , ∅
or B ∩ B′ , ∅. We obtain αi = λµ = λ′µ′ for i ∈ (A ∩ A′) ∪ (B ∩ B′). Finally, this shows
that αn ∈ {λ′µ′, λ′(k − µ′)} = {λµ, λ(k − µ)}. This completes the proof. �

Theorem 2.40. The total number of splits of ∆(k, n) (with k ≤ n/2) equals

(k − 1)
(
2n−1 − (n + 1)

)
−

k−1∑

i=2

(k − i)
(
n
i

)
.

Proof. We have to count the (A, B; µ)-hyperplanes with the restrictions listed in
Lemma 2.38. So we take a set A ⊂ [n] with at least two and at most n − 2 elements.
If A has cardinality i, then there are min(k − 1, n − i − 1) − max(1, k − i + 1) + 1 choices
for µ. Recall that (A, B; µ) and (B, A; k − µ) define the same split; in this way we have
counted each split twice. So we get

1
2

n−2∑

i=2

(
min(k, n − i) −max(1, k − i + 1)

)(n
i

)
=

1
2

n−2∑

i=2

(
min(i, k, n − i) − 1

)(n
i

)

splits, where the equality holds since k ≤ n/2. For a further simplification we rewrite
the sum to get

1
2

k−1∑

i=2

(i − 1)
(
n
i

)
+

1
2

n−k∑

i=k

(k − 1)
(
n
i

)
+

1
2

n−2∑

i=n−k+1

(n − i − 1)
(
n
i

)

=
1
2

(k − 1)
n−2∑

i=2

(
n
i

)
+

1
2

k−1∑

i=2

(
i − 1 − (k − 1)

)(n
i

)
+

1
2

n−2∑

i=n−k+1

(
n − i − 1 − (k − 1)

)(n
i

)

= (k − 1)
(
2n−1 − (n + 1)

)
−

k−1∑

i=2

(k − i)
(
n
i

)
.

�

If we have two distinct splits (A, B; µ) and (C,D; ν) then either {A∩C, A∩D, B∩C, B∩D}
is a partition of [n] into four parts, or exactly one of the four intersections is empty. If,
for instance, B ∩ D = ∅ then B ⊆ C and D ⊆ A.
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Proposition 2.41. Two splits (A, B; µ) and (C,D; ν) of ∆(k, n) are compatible if and
only if one of the following holds:

|A ∩C| ≤ k − µ − ν , |A ∩ D| ≤ ν − µ ,
|B ∩C| ≤ µ − ν , or |B ∩ D| ≤ µ + ν − k .

For an arbitrary set I ⊆ [n] we abbreviate xI :=
∑

i∈I xi. In particular, x∅ = 0 and for
x ∈ ∆(k, n) one has x[n] = k.

Proof. Let x ∈ ∆(k, n) be in the intersection of the (A, B; µ)-hyperplane and the
(C,D; ν)-hyperplane. Our split equations take the form

µ(xA∩C + xA∩D) = (k − µ)(xB∩C + xB∩D) and

ν(xA∩C + xB∩C) = (k − ν)(xA∩D + xB∩D) .

In view of (A∩C)∪ (A∩D)∪ (B∩C)∪ (B∩D) = [n] we additionally have xA∩C + xA∩D +

xB∩C + xB∩D = k, and thus we arrive at the equivalent system of linear equations

(2.10) xA∩C = k − µ − ν + xB∩D , xA∩D = ν − xB∩D , and xB∩C = µ − xB∩D .

Now the two given splits are incompatible if and only if there exists a point x ∈ (0, 1)n

satisfying the conditions (2.10).
Suppose first that none of the four intersections A ∩ C, A ∩ D, B ∩ C, and B ∩ D

is empty. Then x ∈ (0, 1)n satisfies the Equations (2.10) if and only if the system of
inequalities in xB∩D

0 < xB∩D < |B ∩ D|
0 < k − µ − ν + xB∩D < |A ∩C|
0 < µ − xB∩D < |B ∩C|
0 < ν − xB∩D < |A ∩ D|

(2.11)

has a solution. This is equivalent to the following system of inequalities:

0 < xB∩D < |B ∩ D|
µ + ν − k < xB∩D < |A ∩C| + µ + ν − k
µ − |B ∩C| < xB∩D < µ
ν − |A ∩ D| < xB∩D < ν .

Obviously, the latter system admits a solution if and only if each of the four terms
on the left is smaller than each of the four terms on the right. Most of the resulting
16 inequalities are redundant. The following four inequalities remain

|A ∩C| > k − µ − ν
|A ∩ D| > ν − µ
|B ∩C| > µ − ν
|B ∩ D| > µ + ν − k ,

and this completes the proof of this case.
For the remaining cases, we can assume by symmetry that A∩C = ∅. Then x ∈ (0, 1)n

satisfies the Equations (2.10) if and only if xB∩D = µ+ν−k, xA∩D = k−µ, and xB∩C = k−ν.
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So the splits are not compatible if and only if

0 < k − µ < |A ∩ D| = |A|
0 < k − ν < |B ∩C| = |C|
0 < µ + ν − k < |B ∩ D| .

Since, by Lemma 2.38, the first two inequalities hold for all splits this proves that the
splits are compatible if and only if

|A ∩C| = 0 ≤ k − µ − ν or |B ∩ D| ≤ µ + ν − k.

However, again by using Lemma 2.38, one has |A ∩ D| = |A| > k − µ > ν − µ, which
implies |A ∩ D| ≤ ν−µ and, similarly, |B ∩C| ≤ µ− ν cannot be true. This completes the
proof. �

In fact, the four cases of the proposition are equivalent in the sense that, by renaming
the four sets and exchanging µ and ν or µ and k − µ in a suitable way, one will always
be in the first case.

Example 2.42. We consider the case k = 3 and n = 6. For instance, the splits
({1, 2, 6}, {3, 4, 5}; 2) and ({4, 5, 6}, {1, 2, 3}; 2) are compatible since the intersection {3, 4, 5}∩
{1, 2, 3} = {3} has only one element and 2 + 2 − 3 = 1, that is, the inequality “|C ∩ D| ≤
µ + ν − k” is satisfied.

Corollary 2.43. Two splits (A, B; µ) and (A, B; ν) of ∆(k, n) are always compatible.

Proof. Without loss of generality we can assume that µ ≥ ν. Then the condition
“|B ∩C| ≤ µ − ν” of Proposition 2.41 is satisfied. �

In Proposition 2.56 below, we will show that the 1-skeleton of the weak split complex
of any hypersimplex is always a complete graph. In particular, the weak split complex
of ∆(k, n) is connected. (Or it is void if k ∈ {1, n − 1}.)

2.6. Finite Metric Spaces

This section revisits the classical case, studied by Bandelt and Dress [3, 4]; see also
Isbell [55]. Its purpose is to show how some of the key results can be obtained as
immediate corollaries to our results above.

Let d :
(

[n]
2

)
→ R≥0 be a metric on the finite set [n]; that is, d is a symmetric

dissimilarity function which obeys the triangle inequality. By setting

wd(ei + e j) := −d(i, j) ,

each metric d defines a weight function wd on the second hypersimplex ∆(2, n). Hence
the results for k = 2 from Section 2.5 can be applied here. The tight span of d is the
tight span Twd (∆(2, n)).

Let S = (A, B) be a split partition of the set [n], that is, A, B ⊆ [n] with A ∪ B = [n],
A ∩ B = ∅, |A| ≥ 2, and |B| ≥ 2. This gives rise to the split metric

dS (i, j) :=


0 if {i, j} ⊆ A or {i, j} ⊆ B,

1 otherwise.
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The weight function wdS = −dS induces a split of the second hypersimplex ∆(2, n),
which is induced by the (A, B; 1)-hyperplane defined in Equation (2.9). Proposition 2.39
now implies the following characterization.

Corollary 2.44. Each split of ∆(2, n) is induced by a split metric.

Specializing the formula in Theorem 2.40 with k = 2 gives the following.

Corollary 2.45. The hypersimplex ∆(2, n) has 2n−1 − n − 1 splits.

The following corollary and proposition show that our notions of compatibility and
weak compatibility agree with those of Bandelt and Dress [4] for in the special case
of ∆(2, n).

Corollary 2.46 (Hirai [50], Proposition 4.16). Two splits (A, B) and (C,D) of ∆(2, n)
are compatible if and only if one of the four sets A ∩ C, A ∩ D, B ∩ C, and B ∩ D is
empty.

Proof. Let (A, B) and (C,D) be splits of ∆(2, n). We are in the situation of Proposi-
tion 2.41 with k = 2 and µ = ν = 1. Hence all the right hand sides of the four inequalities
in Proposition 2.41 yield zero, and this gives the claim. �

For a split S = (A, B) of ∆(2, n) and m ∈ [n] we denote by S (m) that of the two
sets A, B with m ∈ S (m).

Proposition 2.47. A set S of splits of ∆(2, n) is weakly compatible if and only if
there does not exist m0,m1,m2,m3 ∈ [n] and S 1, S 2, S 3 ∈ S such that S i(m0) = S j(mi) if
and only if i = j.

Proof. This is the definition of a weakly compatible split system ∆(2, n) originally
given by Bandelt and Dress in [4, Section 1, page 52]. Their Corollary 10 states that S
is weakly compatible in their sense if and only if

∑
S∈S wS is a coherent decomposition.

However, this is our definition of weakly compatibility according to Lemma 2.23. �

Example 2.48. The hypersimplex ∆(2, 4) is the regular octahedron, already studied
in Example 2.33. It has the three splits ({1, 2}, {3, 4}), ({1, 3}, {2, 4}), and ({1, 4}, {2, 3}).
The weak split complex is a triangle, and the split compatibility graph consists of three
isolated points.

The split compatibility graph of ∆(2, 5) is isomorphic to the Petersen graph, which
is shown in Figure 2.5.

By Proposition 2.30, each compatible system of splits gives rise to a tree. On the
other hand, given a tree with n labeled leaves take for each edge E that is not connected
to a leave the split (A, B) where A is the set of labels on one side of E and B the set of
labels on the other side. So each tree gives rise to a system of splits for ∆(2, k) which
is easily seen to be compatible. This argument can be augmented to a proof of the
following theorem.

Theorem 2.49 (Buneman [15]; Billera, Holmes, and Vogtmann [8]). The split com-
plex Split(∆(2, n)) is the complex of trivalent leaf-labeled trees with n leaves.
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{1, 3, 5}

{1, 2, 4}

{1, 2} {1, 2, 3}

{1, 3}
{1, 5}

{1, 4}

{1, 2, 5} {1, 4, 5}

{1, 3, 4}

Figure 2.5. Split compatibility graph of ∆(2, 5); a split (A, B) with 1 ∈ A
is labeled “A”.

The split complex Split(∆(2, n)) is equal to the link of the origin Ln−1 of the space
of phylogenetic trees in [8]. It was proved in [93, Theorem 2.4] (see also Robinson and
Whitehouse [79]) that Split(∆(2, n)) is homotopy equivalent to a wedge of n− 3 spheres.
By a result of Trappmann and Ziegler, Split(∆(2, n)) is even shellable [92]. Markwig
and Yu [69] recently identified the space of k tropically collinear points in the tropical
(d − 1)-dimensional affine space as a (shellable) subcomplex of Split(∆(2, k + d)).

Example 2.50. Let S = {(Ai j, [n] \ Ai j) | 1 ≤ i < j ≤ n and j − i < n − 2} where Ai j :=
{i, i + 1, . . . , j − 1, j} be a split system for the hypersimplex ∆(2, n). The combinatorial
criterion of Proposition 2.47 shows that this split system is weakly compatible, and that

|S| =
(

n
2

)
−n. Since ∆(2, n) has

(
n
2

)
vertices and is of dimension n−1, Corollary 2.29 implies

that ΣS(P) is a triangulation. This triangulation is known as the thrackle triangulation
in the literature; see [20], [89, Chapter 14], and additionally [86, 4, 67, 46] for further
occurrences of this triangulation. In fact, as one can conclude from [26, Theorem 3.1]
in connection with [4, Theorem 5], this is the only split triangulation of ∆(2, n), up to
symmetry.

2.7. Matroid Polytopes and Tropical Grassmannians

In the following, we copy some information from Speyer and Sturmfels [84]; the
reader is referred to this source for the details.

Let Z[p] := Z[pi1,...,ik | 1 ≤ i1 < i2 < · · · < ik ≤ n] be the polynomial ring in
(

n
k

)

indeterminates with integer coefficients. The indeterminate pi1,...,ik can be identified with
the k × k-minor of a k × n-matrix with columns numbered (i1, i2, . . . , ik). The Plücker
ideal Ik,n is defined as the ideal generated by the algebraic relations among these minors.
It is obviously homogeneous and is known to be a prime ideal. For an algebraically closed
field K the projective variety defined by Ik,n⊗ZK in the polynomial ring K[p] = Z[p]⊗ZK
is the Grassmannian Gk,n (over K). It parametrizes the k-dimensional linear subspaces
of the vector space Kn.
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For instance, we can pick K as the algebraic closure of the field C(t) of rational
functions. Then for an arbitrary ideal I in K[x] = K[x1, . . . , xm] its tropicalization T (I)
is the set of all vectors w ∈ Rm such that the initial ideal inw(I) with respect to the term
order defined by the weight function w does not contain any monomial. The tropical
Grassmannian Gr(k, n) (over K) is the tropicalization of the Plücker ideal Ik,n ⊗Z K.

The tropical Grassmannian Gr(k, n) is a polyhedral fan in R
(

n
k

)
such that each of its

maximal cones has dimension (n− k)k + 1. In a way the fan Gr(k, n) contains redundant
information. We describe the three step reduction in [84, Section 3].

Let ϕ be the linear map from Rn to R
(

n
k

)
which sends x = (x1, . . . , xn) to (xI | I ∈

(
[n]
k

)
).

Recall that xI is defined as
∑

i∈I xi. The map ϕ is injective, and its image imϕ co-
incides with the intersection of all maximal cones in Gr(k, n). Moreover, the vector

1 := (1, 1, . . . , 1) of length
(

n
k

)
is contained in the image of ϕ. This leads to the definition

of the two quotient fans

Gr′(k, n) := Gr(k, n)/R1 and Gr′′(k, n) := Gr(k, n)/ imϕ .

Finally, let Gr′′′(k, n) be the (spherical) polytopal complex arising from intersecting Gr′′(k, n)

with the unit sphere in R
(

n
k

)
/ imϕ. We have dim Gr′′′(k, n) = n(k − 1)− k2. It seems to be

common practice to use the name “tropical Grassmannian” interchangeably for Gr(k, n),
Gr′(k, n), Gr′′(k, n), as well as Gr′′′(k, n).

It is unlikely that it is possible to give a complete combinatorial description of all
tropical Grassmannians. The contribution of combinatorics here is to provide kind of an
“approximation” to the tropical Grassmannians via matroid theory. For a background
on matroids, see the books edited by White [94, 95].

The Dressian Dr(k, n) is the subfan of the secondary fan of ∆(k, n) of those weight
functions which induce matroid subdivisions. A polytopal subdivision Σ of ∆(k, n) is
a matroid subdivision if each (maximal) cell is a matroid polytope. If M is a matroid
on the set [n] then the corresponding matroid polytope is the convex hull of those 0/1-
vectors in Rn which are characteristic functions of the bases of M. A finite point set
X ⊂ Rd (possibly with multiple points) gives rise to a matroidM(X) by taking as bases
forM(X) the maximal affinely independent subsets of X. The following characterization
of matroid subdivisions is essential.

Theorem 2.51 (Gel′fand, Goresky, MacPherson, and Serganova [38], Theorem 4.1).
Let Σ be a polytopal subdivision of ∆(k, n). The following are equivalent:

(a) The maximal cells of Σ are matroid polytopes, that is, Σ is a matroid subdivision,
(b) the 1-skeleton of Σ coincides with the 1-skeleton of ∆(k, n), and
(c) the edges in Σ are parallel to the edges of ∆(k, n).

Regular matroid subdivisions of hypersimplices are called “generalized Lie com-
plexes” by Kapranov [60]. The corresponding equivalence classes of weight functions
are the “tropical Plücker vectors” of Speyer [83].

The relationship between the two fans Dr(k, n) and Gr(k, n) is the following. Alge-
braically, Dr(k, n) is the tropicalization of the ideal of quadratic Plücker relations; see
Speyer [83, Section 2]. Conversely, each weight function in the fan Gr(k, n) gives rise
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to a matroid subdivision of ∆(k, n). However, since there is no secondary fan naturally
associated with Gr(k, n) it is a priori not clear how Gr(k, n) sits inside Dr(k, n). Note
that, unlike Gr(k, n), the Dressian does not depend on the characteristic of the field K.

Our goal for the rest of this section is to explain how the hypersimplex splits are
related to the Dressians.

Proposition 2.52. Let Σ be a matroid subdivision and S a split of ∆(k, n). Then Σ

and S have a common refinement (without new vertices).

Proof. Of course, one can form the common refinement Σ′ of Σ and S but Σ′

may contain additional vertices, and hence does not have to be a polytopal subdivision
of ∆(k, n). However, additional vertices can only occur if some edge of Σ is cut by the
hyperplane HS . By Theorem 2.51, all edges of Σ are edges of ∆(k, n). But since S is a
split, it does not cut any edges of ∆(k, n). Therefore Σ′ is a common refinement of S
and Σ without new vertices. �

In order to continue, we recall some notions from linear algebra: Let V be a vector
space. A set A ⊂ V is said to be in general position if any subset S of A with |S | ≤
dim V + 1 is affinely independent. A family A = {Ai | i ∈ I} of sets in V is said to be in
relative general position if for each affinely dependent set S ⊆ ⋃

i∈I Ai with |S | ≤ dim V +1
there exists some i ∈ I such that S ∩ Ai is affinely dependent.

Lemma 2.53. Let M(X) be a matroid of rank k defined by X ⊂ Rk−1. If X =
⋃

i∈I Ai

for some family A = {Ai | i ∈ I} of sets in relative general position such that each Ai is
in general position as a subset of aff Ai, then the set of bases of M(X) is given by

{B ⊂ X | |B| = k and |B ∩ Ai| ≤ dim(aff Ai) + 1 for all i ∈ I} .(2.12)

Proof. It is obvious that for each basis B ofM(X) one has |B ∩ Ai| ≤ dim(aff Ai) + 1
for all i ∈ I. So it remains to show that each set B in (2.12) is affinely independent.
Let B be such a set and suppose that B is not affinely independent. SinceA is in relative
general position, there exists some i ∈ I such that B∩Ai is affinely dependent. However,
since |B ∩ Ai| ≤ dim(aff Ai) + 1, this contradicts the fact that Ai is in general position
in aff Ai. �

From each split (A, B; µ) of ∆(k, n) we construct two matroid polytopes with points
labeled by [n]: Take any (µ − 1)-dimensional (affine) subspace U ⊂ Rk−1 and put |B|
points labeled by B into U such that they are in general position (as a subset of U).
The remaining points, labeled by A, are placed in Rk−1 \U such that they are in general
position and in relative general position together with the set of points labeled by B.
By Lemma 2.53, the bases of the corresponding matroid are all k-element subsets of [n]
with at most µ points in B. These are exactly the points on one side of the (A, B; µ)-
hyperplane. The second matroid is obtained symmetrically, that is, starting with |A|
points in a (k − µ − 1)-dimensional subspace. Since splits are regular and correspond to
rays in the secondary fan, we have proved the following lemma.

Lemma 2.54. Each split of ∆(k, n) defines a regular matroid subdivision and hence
a ray in Dr(k, n).
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Matroids arising in this way are called split matroids, and the corresponding matroid
polytopes are the split matroid polytopes.

Remark 2.55. Kim [62] studies the splits of general matroid polytopes. However,
his definition of a split requires that it induces a matroid subdivision. Lemma 2.54 shows
that for the entire hypersimplex these notions agree. In this case, [62, Theorem 4.1]
reduces to our Lemma 2.38.

Proposition 2.56. The 1-skeleton of the weak split complex Splitw(∆(k, n)) of ∆(k, n)
is a complete graph.

Proof. We have to prove that any two splits of ∆(k, n) are weakly compatible.
Since splits are matroid subdivisions by Lemma 2.54, this immediately follows from
Proposition 2.52. �

Example 2.57. We continue our Example 2.48, where k = 2 and n = 4. Up to
symmetry, each split of the regular octahedron ∆(2, 4) looks like ({1, 2}, {3, 4}; 1), that is,
so we have µ = 1.

In this case, the affine subspace U is just a single point on the line R1. The only
choice for the two points corresponding to B = {3, 4} is the point U itself. The two
points corresponding to A = {1, 2} are two arbitrary distinct points both of which are
distinct from U. The situation is displayed in Figure 2.6 on the left. This defines the
first of the two matroids induced by the split ({1, 2}, {3, 4}; 1). Its bases are {1, 2}, {1, 3},
{1, 4}, {2, 3}, and {2, 4}.

The second matroid is obtained in a similar way. Both matroid polytopes are square
pyramids, and they are shown (with their vertices labeled) in Figure 2.6 on the right.
The pyramid in bold is the one corresponding to the matroid whose construction has
been explained in detail above and which is shown on the left.

1 2

3
4

U {2,4}

{1,4}

{2,4}

{1,4}

{2,3}

{3,4}

{1,3}

{1,2}

{2,3}

{1,3}

Figure 2.6. Matroid and matroid subdivision induced by a split as ex-
plained in Example 2.57.

As in the case of the tropical Grassmannian, we can intersect the fan Dr(k, n) with

the unit sphere in R
(

n
k

)
−n

to arrive at a (spherical) polytopal complex Dr′(k, n), which we
also call the Dressian. The following is one of our main results.
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Theorem 2.58. The split complex Split(∆(k, n)) is a polytopal subcomplex of the
Dressian Dr′(k, n).

Proof. By Proposition 2.26, the split complex is a subcomplex of SecFan′(∆(k, n)).
Furthermore, by Lemma 2.54 each split corresponds to a ray of Dr(k, n). So it remains
to show that all maximal cells of ΣS(∆(k, n)) are matroid polytopes whenever S is a
compatible system of splits. The proof will proceed by induction on k and n. Note that,
since ∆(k, n) � ∆(n − k, n), it is enough to have as base case k = 2 and arbitrary n, which
is given by Proposition 2.61.

By Theorem 2.51, we have to show that there do not occur any edges in ΣS(∆(k, n))
that are not edges of ∆(k, n). Since S is compatible no split hyperplanes meet in the
interior of ∆(k, n), and so additional edges could only occur in the boundary. By Obser-
vation 2.12, for each split S ∈ S and each facet F of ∆(k, n) there are two possibilities:
Either HS does not meet the interior of F, or HS induces a split S ′ on F. The restriction
of ΣS(∆(k, n)) to F equals the common refinement of all such splits S ′. So, using the
induction hypothesis and again Theorem 2.51, it suffices to prove that the split systems
that arise in this fashion are compatible.

So let S = (A, B; µ) ∈ S. We have to consider two types of facets of ∆(k, n) induced
by xi = 0, xi = 1, respectively. In the first case, the arising facet F is isomorphic
to ∆(k, n − 1) and, if HS meets F in the interior, the split S ′ of F equals (A \ {i}, B; µ)
or (A, B \ {i}; µ). It is now obvious by Proposition 2.41 that the system of all such S ′ is
compatible if S was.

In the second case, the facet F is isomorphic to ∆(k − 1, n − 1) and S ′ (again if HS

meets the interior of F at all) equals (A \ {i}, B; µ) or (A, B \ {i}; µ − 1). To show that a
split system is compatible, it suffices to show that any two of its splits are compatible.
So let S = (A, B; µ) and T = (C,D; ν) be compatible splits for ∆(k, n) such that HS

and HT meet the interior of F, and S ′ = (A′, B′; µ′), T ′ = (C′,D′; ν′), respectively, the
corresponding splits of F. By the remark after Proposition 2.41, we can suppose that
we are in the first case of Proposition 2.41, that is, |A ∩C| ≤ k − µ − ν. We now
have to consider the four cases that i is an element of either A ∩ C, A ∩ D, B ∩ C, or
B ∩ D. In the first case, we have S ′ = (A \ {i}, B; µ) and T ′ = (C \ {i},D, ν). We get
|A′ ∩C′| = |A ∩C| − 1 ≤ k − µ − ν − 1 = k − 1 − µ′ − ν′, so S ′ and T ′ are compatible. The
other cases follow similarly, and this completes the proof of the theorem. �

Construction 2.59. We will now explicitly construct the matroid polytopes that
occur in the refinement of two compatible splits. So consider two compatible splits of
∆(k, n) defined by an (A, B; µ)- and a (C,D; ν)-hyperplane. These two hyperplanes divide
the space into four (closed) regions. Compatibility implies that the intersection of one
of these regions with ∆(k, n) is not full-dimensional, two of the intersections are split
matroid polytopes, and the last one is a full-dimensional polytope of which we have to
show that it is a matroid polytope. It therefore suffices to show that one of the four
intersections is a full-dimensional matroid polytope that is not a split matroid polytope.

By Proposition 2.41 and the remark following its proof, we can assume without loss
of generality that |B ∩ D| ≤ µ+ν−k. Note first that the equation

∑
i∈B xi = µ also defines

the (A, B; µ)-hyperplane from Equation (2.9) since xA∪B = k for any point x ∈ ∆(k, n).
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We will show that the intersection of ∆(k, n) with the two halfspaces defined by∑

i∈B

xi ≤ µ and
∑

i∈D

xi ≤ ν

is a full-dimensional matroid polytope which is not a split matroid polytope.
To this end, we define a matroid on the ground set [n] together with a realization

in Rk−1 as follows. Pick a pair of (affine) subspaces UB and UD of Rk−1 such that the
following holds: dim UB = µ− 1, dim UD = ν− 1, and dim(UB ∩UD) = µ+ ν− k − 1. Note
that the last expression is non-negative as 0 ≤ |B ∩ D| ≤ µ + ν − k − 1. The dimension
formula then implies that dim(UB + UD) = µ − 1 + ν − 1 − µ − ν + k + 1 = k − 1, that is,
UB + UD = Rk−1.

Each element in [n] labels a point in Rk−1 according to the following restrictions. For
each element in the intersection B ∩ D we pick a point in UB ∩UD such that the points
with labels in B∩D are in general position within UB∩UD. Since |B ∩ D| ≤ µ+ ν− k the
points with labels in B ∩ D are also in general position within UB. Therefore, for each
element in B \ D = B∩C we can pick a point in UB \ (UB ∩UD) such that all the points
with labels in B are in general position within UB. Similarly, we can pick points for the
elements of D∩ A in UD \ (UB ∩UD) such that the points with labels in D are in general
position within UD. Without loss of generality, we can assume that the points with
labels in B and the points with labels in D are in relative general position as subsets of
UB + UD = Rk−1.

For the remaining elements in A∩C = [n]\(B∪D) we can pick points in Rk−1\(UB∪UD)
such that the points with labels in A ∩ C are in general position and the family of sets
of points with labels in B, D, and A∩C, respectively, is in relative general position. By
Lemma 2.53, the matroid generated by this point set has the desired property.

1

2

3 4 5

6

UB

UD

Figure 2.7. Non-split matroid constructed from two compatible splits
in ∆(3, 6) as in Example 2.60.

Example 2.60. We continue our Example 2.42, where k = 3 and n = 6, considering
the compatible splits ({1, 2, 6}, {3, 4, 5}; 2) and ({4, 5, 6}, {1, 2, 3}; 2). In the notation used
in Construction 2.59 we have A = {1, 2, 6}, B = {3, 4, 5}, C = {4, 5, 6}, D = {1, 2, 3},
and µ = ν = 2. Hence A ∩ C = {6}, A ∩ D = {1, 2}, B ∩ C = {4, 5}, and B ∩ D = {3}.
The matroid from Construction 2.59 is displayed in Figure 2.7. The non-split matroid
polytope constructed in the proof of Theorem 2.58 has the f -vector (18, 72, 101, 59, 14).
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For the special case k = 2 the structure of the tropical Grassmannian and the
Dressian is much simpler. The following proposition follows from [84, Theorem 3.4] in
connection with Theorem 2.49.

Proposition 2.61. The tropical Grassmannian Gr′′′(2, n) equals Dr′(2, n), and it is
a simplicial complex which is isomorphic to the split complex Split(∆(2, n)).

Let us revisit the two smallest cases: The tropical Grassmannian Gr′′′(2, 4) consists
of three isolated points corresponding to the three splits of the regular octahedron,
and Gr′′′(2, 5) is a one-dimensional simplicial complex isomorphic to the Petersen graph;
see Figure 2.5.

Proposition 2.62. The rays in Dr(k, n) correspond to the coarsest regular matroid
subdivisions of ∆(k, n).

Proof. By definition, a ray in Dr(k, n) defines a regular matroid subdivision which
is coarsest among the matroid subdivisions of ∆(k, n). We have to show that this is a
coarsest among all subdivisions.

To the contrary, suppose that Σ is a coarsest matroid subdivision which can be
coarsened to a subdivision Σ′. By construction the 1-skeleton of Σ′ is contained in
the 1-skeleton of Σ. From Theorem 2.51 it follows that Σ′ is matroidal. This is a
contradiction to Σ being a coarsest matroid subdivision. �

Example 2.63. In view of Proposition 2.61, the first example of a tropical Grass-
mannian that is not covered by the previous results is the case k = 3 and n = 6. So we
want to describe how the split complex Split(∆(3, 6)) is embedded into Gr′′′(3, 6). We
use the notation of [84, Section 5]; see also [81, Section 4.3].

The tropical Grassmannian Gr′′′(3, 6) is a pure three-dimensional simplicial complex
which is not a flag complex. Its f -vector reads (65, 550, 1395, 1035), and its homology
is concentrated in the top dimension. The only non-trivial (reduced) homology group
(with integral coefficients) is H3(Gr′′′(3, 6);Z) = Z126.

The splits with A = {1} ∪ A1, µ = 1, and A = {1} ∪ A3, µ = 2, are the 15 vertices of
type“F”. The splits with A = {1}∪A2 and µ ∈ {1, 2} are the 20 vertices of type“E”. Here Am

is an m-element subset of {2, 3, . . . , n}. The remaining 30 vertices are of type “G”, and
they correspond to coarsest subdivisions of ∆(3, 6) into three maximal cells. Hence they
do not occur in the split complex. See also Billera, Jia, and Reiner [9, Example 7.13].

The 100 edges of type “EE” and the 120 edges of type “EF” are the ones induced by
compatibility. Since Split(∆(3, 6)) does not contain any “FF”-edges it is not an induced
subcomplex of Gr′′′(3, 6). The matroid shown in Figure 2.7 arises from an “EE”-edge.

The split complex is three-dimensional and has f -vector (35, 220, 360, 30). It is not
pure: The 30 maximal faces of dimension three are the tetrahedra of type “EEEE”. The
remaining 240 maximal faces are “EEF”-triangles.

The integral homology of Split(∆(3, 6)) is concentrated in dimension two, and it is
free of degree 144.

Remark 2.64. Example 2.63 and Proposition 2.61 show that the split complex is
a subcomplex of Gr′′′(k, n) if d = 2 or n ≤ 6. However, this does not hold in general:
Consider the weight functions w,w′ defined in the proof of [84, Theorem 7.1]. It is easily
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seen from Proposition 2.41 that w and w′ are sums of the weight functions of compatible
systems of vertex splits for ∆(3, 7). Yet in the proof of [84, Theorem 7.1], it is shown
that w,w′ < Gr′′′(3, 7) for fields with characteristic not equal to two and equal to two,
respectively.

2.8. Open Questions and Concluding Remarks

We showed that special split complexes of polytopes (e.g., of the polygons and of the
second hypersimplices) already occurred in the literature albeit not under this name.
So the following is natural to ask.

Question 2.65. What other known simplicial complexes arise as split complexes of
polytopes?

The split hyperplanes of a polytope define an affine hyperplane arrangement. For
example, the coordinate hyperplane arrangements arises as the split hyperplane arrange-
ment of the cross polytopes; see Example 2.33.

Question 2.66. Which hyperplane arrangements arise as split hyperplane arrange-
ments of some polytope?†

Jonsson [57] studies generalized triangulations of polygons; this has a natural gen-
eralization to simplicial complexes of split systems such that no k + 1 splits in such a
system are totally incompatible. See also [76, 22].

Question 2.67. How do such incompatibility complexes look alike for other poly-
topes?

All computations with polytopes, matroids, and simplicial complexes were done with
polymake [37]. The visualization also used JavaView [77].

We are indebted to Bernd Sturmfels for fruitful discussions. We also thank Hiroshi
Hirai and an anonymous referee for several useful comments.

†For a study of hyperplane arrangements and an answer to a slightly different question see Section 3.4.





CHAPTER 3

More About Splits

In this chapter, we will continue to develop the theory of tight spans and splits of
convex polytopes. First, we will give a collection of results about tight spans, splits, and
(weak) compatibility some of which will be used later. In Section 3.2, we will examine
some examples by discussing the splits and their compatibility for cubes, products of
simplices, and products of hypersimplices, therewith giving partial computations of the
split complexes of these polytopes. We conclude our general discussion about split
theory in the third section by describing how splits can behave under some standard
constructions for polytopes.

In Section 3.4, the connection of splits with hyperplane arrangements we pointed
out in Section 2.8 will be further investigated. We show that each affine hyperplane
arrangement occurs as the hyperplane arrangement of some weakly compatible split
system for some polytope.

The last two sections are devoted to the extension of the theory of splits to oriented
matroids and to the attempt to give a combinatorial description of splits.

3.1. Conditions for Splits and Compatibility

We have seen in Section 2.3, especially in Observation 2.12, some conditions when
a hyperplane H defines a split of a polytope P. We will summarize and extend this in
the following proposition, which can be derived directly from the definition of split and
Observation 2.12.

Proposition 3.1. For a hyperplane H and a polytope P with H ∩ relint P , ∅ the
following are equivalent:

(a) H induces a split on P,
(b) H meets all edges of P in a face of P,
(c) H meets all faces of P in a face of P or induces a split on them,
(d) H meets all facets of P in a face of P or induces a split on them,
(e) all vertices of the subdivision of P with maximal faces P ∩ H+ and P ∩ H− are

vertices of P,
(f) H ∩ P = conv(Vert P ∩ H).

Here H+ and H− denote the two halfspaces in which Rd+1 is divided by the hyper-
plane H.

The following specialization of Proposition 3.1 will be useful when constructing splits
of concrete 0/1-polytopes.

41
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Corollary 3.2. Let P ⊂ Rd+1 be a 0/1-polytope and H a hyperplane defined by∑

i∈I

xi = k ,

where I ⊆ [d + 1], k ∈ Z. If H ∩ relint P , ∅ and for all edges (v,w) of P we have∣∣∣ |{i ∈ [d + 1] | vi = 1}| − |{i ∈ [d + 1] | v̄i = 1}|
∣∣∣ ≤ 1, then H induces a split on P.

Proof. Suppose we have a hyperplane H with these properties that does not define
a split. By Proposition 3.1, this means that there exists some edge (v, v̄) of P with∑

i∈I vi = l > k and
∑

i∈I v̄i = m < k. Since the vertices are integral we must have l,m ∈ Z
and hence l ≥ k + 1,m ≤ k − 1. This implies

∑
i∈I(vi − v̄i) ≥ k + 1 − (k − 1) = 2, but on the

other hand, the sum
∑

i∈I(vi − v̄i) can change by at most 1 since P is a 0/1-polytope, and∣∣∣ |{i ∈ [d + 1] | vi = 1}| − |{i ∈ [d + 1] |wi = 1}|
∣∣∣ ≤ 1. This is the desired contradiction. �

The following is a direct corollary of Remark 2.13 (see also the discussion in Sec-
tion 3.5) since affinely isomorphic polytopes have the same oriented matroid. However,
we give a direct argument that does not use the language of oriented matroids. Note
that – in contrast – combinatorially isomorphic polytopes need not to have the same
splits for d ≥ 3; see Remark 2.14.

Corollary 3.3. Affinely isomorphic polytopes have the same splits.

Proof. This follows from Condition (f) of Proposition 3.1 since for a polytope P a
hyperplane H, and an isomorphism ϕ the condition H ∩ P = conv(Vert P ∩ H) directly
leads to ϕ(H) ∩ ϕ(P) = conv(Vertϕ(P) ∩ ϕ(H)) since ϕ maps hyperplanes to hyperplanes
and preserves convexity. �

A key in understanding when two splits of a polytope P are (weakly) compatible is to
examine the intersection of one of the split hyperplanes HS with P. We call PS := P∩HS

the polytope induced by the split S on P.

Example 3.4. (a) The polytopes induced by splits of the hypersimplex ∆(k, n)
are products of hypersimplices. The split S induced by the (A, B; µ)-hyperplane
is isomorphic to ∆(k − µ, |A|) × ∆(µ, |B|). If S is a vertex split we have |A| = k
and µ = k − 1 so we get the product of a (k − 1)-dimensional and an (n − k − 1)-
dimensional simplex. Also in the case k = 2 all polytopes induced by splits are
products of simplices.

(b) The polytopes induced by splits of the n-cube Cn are products of cubes and
hypersimplices. The split S defined by the hyperplane (3.1) of Proposition 3.15
below is isomorphic to ∆((|I| − k)/2, |I|) ×Cn−|I|.

(c) If S v is a vertex split of a polytope P, the polytope induced by S v is isomorphic
to the vertex figure of P at v.

Now we can give conditions for two splits of a polytope to be compatible or weakly
compatible:

Proposition 3.5. Let S 1 and S 2 be two splits of a polytope P.

(a) The splits S 1 and S 2 are compatible if and only if PS 1 ∩ PS 2 = PS 1 ∩ HS 2 is a
face of PS 1 (possibly empty).
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(b) The splits S 1 and S 2 are weakly compatible if and only if either PS 1 ∩ HS 2 is a
face of PS 1 or HS 2 induces a split on PS 1.

Proof. (a) The splits S 1 and S 2 are compatible if and only if HS 1 and HS 2 do
not meet in relint P. It is clear that this is equivalent to relint PS 1 ∩ HS 2 = ∅.
However, since S 2 is a split this means that PS 1 ∩ HS 2 is a face of PS 1 .

(b) The splits S 1 and S 2 are weakly compatible if and only if the common refine-
ment Σ of the two subdivisions S 1 and S 2 does not use additional vertices.
Obviously, these vertices can only occur in PS 1 ∩ HS 2 what happens if and only
if HS 2 does not induce a split on PS 1 .

�

The following more general condition can be used subsequently to construct com-
patible or weakly compatible split systems.

Proposition 3.6. Let S be a split system and S another split of a polytope P.

(a) If S is compatible then S∪ {S } is compatible if and only if PS ′ ∩HS is a face of
PS ′ for all S ′ ∈ S.

(b) If S is weakly compatible then S∪ {S } is weakly compatible if and only if for all
faces F of ΣS(P) either HS ∩ F is a face of F or HS induces a split on F.

Proof. (a) Follows inductively from Proposition 3.5 (a).
(b) The split system S ∪ {S } is weakly compatible if and only if the common re-

finement of ΣS(P) and S is again a subdivision of P without new vertices. This
means that for all faces F of ΣS(P) which meet HS in the interior we must have
HS ∩ F = conv(Vert(F) ∩ H). But, by Proposition 3.1, this means that HS ∩ F
has to be a face of F, or HS has to induce a split on F.

�

For the weakly compatible case, this leads us to the following list of conditions
(cf. Proposition 3.1).

Corollary 3.7. Let P be a polytope, ΣS(P) a subdivision of P induced by a weakly
compatible set of split S, and S < S a split of P. Then the following are equivalent:

(a) S ∪ {S } is weakly compatible,
(b) HS meets all edges of ΣS(P) in a face of ΣS(P),
(c) HS meets all faces of ΣS(P) in a face of ΣS(P) or induces a split on them,
(d) HS meets all codimension-one-faces of ΣS(P) in a face of ΣS(P) or induces a

split on them,
(e) HS ∩C = conv(Vert C ∩ HS ) for all maximal cells C of ΣS(P).

Proof. That (a) is equivalent to (c) follows directly from Proposition 3.6 (b). Sup-
pose now that there is some face F of ΣS(P) which is not met by HS in a face or in
which HS does not induce a split. By Proposition 3.1, this means that there is an edge
of F and hence of ΣS(P) which is not met in a face by HS . This shows the equivalence
of (a) and (b). The equivalence of (a) and (d) follows by a slight strengthening of
the argument in the proof of Proposition 3.6 (b). That (e) is equivalent to the other
conditions is obvious. �
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Note that, in fact, a hyperplane H which fulfills one of the conditions (b) to (e) of
Corollary 3.7 defines a split S on P, so this does not have to be checked a priori.

If S is actually compatible, then checking weak compatibility of S ∪ {S } can be
reduced to checking pairwise weak compatibility.

Lemma 3.8. Let P be a polytope, S a compatible split system of P, and S another
split of P. Then the split system S∪{S } is weakly compatible if and only if for all S ′ ∈ S
the splits S and S ′ are weakly compatible.

Proof. We only have to prove that the condition is sufficient. So suppose that
S ∪ {S } is not weakly compatible. Then, by Proposition 3.6 (b), there exists some
face F of ΣS(P) with HS ∩ F , ∅ on which HS does not define a split. But since S is
compatible, F is the face of HS ′ ∩P for some S ′ ∈ S; and hence S and S ′ are not weakly
compatible. �

This leads to the following interesting consequence.

Corollary 3.9. Let S1 and S2 be two compatible split systems of a polytope P.
If each two elements S 1 ∈ S1, S 2 ∈ S2 are weakly compatible, then S1 ∪ S2 is weakly
compatible.

Proof. Suppose S1∪S2 is not weakly compatible. Then in the common refinement
of the subdivision ΣS1(P) and ΣS2(P) there has to be an additional vertex v. Let F be
the inclusion-minimal face of ΣS1(P) with v ∈ F, and S̄ := {S ∈ S2 | v ∈ HS }. If |S̄| ≤ 1
or HS ∩ F = HS ′ ∩ F for all S , S ′ ∈ S̄ we get a contradiction by Lemma 3.8. So we have
v ∈ I :=

⋂
S∈S̄ S which implies I ∩ relint P , ∅. But this contradicts the compatibility

of S2. �

Remark 3.10. A set of vertex splits of a polytope P as in Remark 2.14 is compatible
if and only if it is weakly compatible, if and only if their corresponding vertices are not
connected by an edge of the polytope. Hence a set of those splits is weakly compatible
if and only if it is compatible. So the simplicial complex of stable sets of the edge
graph of a polytope is a subcomplex of Split(P) and SecFan′(P); see Corollary 7.9 and
Theorem 7.10 for an application of this observation.

If one has a (weakly) compatible set S1 of such splits and a set S2 of other splits
of P, the set S1 ∪ S2 is a weakly compatible split system of P if and only if S2 is a
weakly compatible split system for the polytope P̄ which arises from P by cutting of
all vertices corresponding to the splits in S1. Especially all splits of P̄ are splits of P,
namely those splits S for which S1 ∪ {S } is (weakly) compatible.

If P is a simple polytope, there exist vertex splits for all vertices; see Remark 2.14.
So a stable set of the vertex graph of P gives us a compatible split system. As an
example consider the n-dimensional cube Cn. Taking the set of all vertices with an even
number of ones which is easily seen to be a stable set of the vertex graph of the cube
and cutting them of one arrives at a polytope C̄n with 2n−1 vertices, half of the vertices
of Cn. By looking for splits or split subdivisions of C̄n one gets splits or split subdivisions
of the cube.
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In Section 2.3, we defined the split polyhedron of P, whose facets correspond to
the splits of P. On the other hand, there is (in general) no correspondence of split
triangulations or maximal weakly compatible split systems with vertices SplitPoly(P).
This follows directly from the fact that there exists split triangulations which do not use
the maximal possible number of splits and hence cannot define a vertex. For an example
consider the triangulation in Figure 2.3 (left) of the 3-cube which is the refinement of
three splits. However, SplitPoly(C3) has dimension four; see also Example 2.34. However,
at least the following weaker statement holds.

Proposition 3.11. Let S be a weakly compatible split system of a polytope P. Then
the facets of SplitPoly(P) corresponding to the splits in S share a common vertex.

Proof. Let F be the face of SecPoly(P) obtained as the intersection of all facets
corresponding to splits in S. Just as well, we define F′ as the face of SplitPoly(P) that
is the intersection of the facets of SplitPoly(P) corresponding to splits in S. By the
definition of SplitPoly(P), we have F ⊂ F′. So any vertex of F′ works. �

So the split polyhedron may be used to find all maximal weakly compatible split
systems (and all split triangulations): For each vertex (or inclusion minimal face) of
SplitPoly(P) take the splits corresponding to all its facets and try which one are weakly
compatible.

By considering all split triangulations of a polytope P, one can also define the inner
split polytope InSplitPoly(P) of P is the convex hull of all vertices of the secondary
polytope of P which are split triangulations. In contrast to the outer approximation
SplitPoly(P), the polytope InSplitPoly(P) gives us an inner approximation of SecPoly(P).
This can be used to give bounds for some properties of SecPoly(P), for example the
volume. (Note, however, that InSplitPoly(P) may well be empty.)

Weakly compatible split systems which are at the same time totally incompatible
are interesting because they correspond to central hyperplane arrangements and be-
cause their tight spans are zonotopes; see Section 3.4. The following gives a necessary
condition for a split system to have this property.

Lemma 3.12. Let P be a d-dimensional polytope and S a totally incompatible split
system for P. If S is weakly compatible, then

∣∣∣⋂S∈S HS ∩ Vert P
∣∣∣ ≥ d + 1 − |S|.

Proof. The intersection I :=
⋂

S∈S HS has codimension at most |S|. Since S is
totally incompatible, I meets the interior of P, and so I ∩ P is a polytope of dimension
at least (d− |S|) and has at least d + 1− |S| vertices. All these vertices has to be vertices
of P by Proposition 3.1. This shows the claim. �

For the special case |S| = 2 this can be reformulated as follows:

Corollary 3.13. Let S 1 and S 2 be two splits of a d-dimensional polytope P that
are weakly compatible but not compatible. Then we have |HS 1 ∩ HS 2 ∩ Vert P| ≥ d − 1.

We close this section with a simple bound on the dimension of the tight span of the
coherent sum of two weight functions.
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Proposition 3.14. Let w1, w2 be lifting functions of a polytope P and Tw1(P), Tw2(P)
the corresponding tight spans. If (w1,w2) is coherent, we have

dim Tw1+w2(P) ≤ dim Tw1(P) + dim Tw2(P) .

Proof. Let F be a face of Tw1+w2(P) of dimension d := dim Tw1+w2(P). Each face F of
the Minkowski sum of two polyhedra is the Minkowski sum of two faces F1, F2, one from
each summand. So we have faces F1 ⊂ Tw1(P) and F2 ⊂ Tw2(P) such that F = F1 + F2.
This implies that d = dim F ≤ dim F1 + dim F2 ≤ dim Tw1(P) + dim Tw2(P). �

3.2. Examples

In Section 2.5, we discussed the splits and their compatibility relations for hyper-
simplices. In this section, we compute the splits of other families of polytopes and the
compatibility relations for some of them.

The first polytope we discuss is the n-dimensional cube Cn. To get a symmetric
description of the splits, we consider the cube as Cn := [−1, 1]n.

Proposition 3.15. The splits of the n-dimensional cube Cn are given by hyperplanes
defined as

∑

i∈I

εixi = k ,(3.1)

for some I ⊂ [n] where εi ∈ {−1, 1}, 0 ≤ k ≤ |I| − 2, and k ≡ |I| mod 2.

Proof. For n = 2 we have the two splits defined by x1 + x2 = 0 and x1 − x2 = 0. So
the proposition is obviously true, and we can proceed inductively.

First, we prove the existence of the splits. For I ( [n] we look at the face of Cn

defined by xi = 1 for all i < I. This face F is isomorphic to C|I|. It is easily seen that the
splits of F extends to splits of Cn, so we can assume that I = [n]. Obviously, for each
vertex v of Cn we have

∑n
i=1 εivi ≡ n mod 2, and the sum changes by ±2 if we change

one vi form +1 to −1 or vice versa, which corresponds to going along an edge of Cn. So
the two vertices of an edge of Cn cannot be on different sides of our splitting hyperplane.
Furthermore, one can compute that the hyperplane (3.1) meets the interior of Cn if and
only if −(|I| − 2) ≤ k ≤ |I| − 2 and k ≡ |I| mod 2. This shows that all those hyperplanes
define splits by Proposition 3.1.

To prove that these are the only splits we proceed as follows: Let a split of Cn be
given by the hyperplane H := {x ∈ Rn | ∑n

i=1 αixi = β} for some αi, β ∈ R. If αi = 0
for some i, the hyperplane must also define a split on the facet of Cn defined by xi = 1
which is isomorphic to Cn−1, and we are done by induction. So we can assume that for
all i we have αi , 0. Let now H meet a facet F of Cn in the interior; without loss of
generality we assume that F = Cn ∩ {x ∈ Rn | x1 = 1}. Then, by Proposition 3.1, the
equation

∑n
i=2 αixi = β − 1 has to define a split on F � Cn−1. So we have αi = ±λ for all

i > 1 and β = λβ̄ + 1 for some λ ∈ R, 0 ≤ β̄ ≤ n − 3, β̄ ≡ n − 1 mod 2. Similar equations
also have to hold for another j ∈ [n], so we get that αi = ±λ = ±λ′ for i < {1, j} and that
β = λβ̄ + 1 = λ′β̄′ + 1. By setting λ := λ′ := 1, we get the desired result αi = ±1 and
0 ≤ β ≤ n − 2, β ≡ n mod 2. �
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Corollary 3.16. The n-dimensional cube Cn has

3n−1n − 3n − 1
2

(3.2)

splits which come in
⌊
n2/4

⌋
equivalence classes.

Proof. All splits are given by Proposition 3.15. We sum over all possible cardinal-
ities for I, which are 2, . . . , n (since 0 ≤ k ≤ |I| − 2 implies |I| ≥ 2). For a fixed cardinality
|I| = l we can choose the εi in 2l ways and have bl/2c different possibilities for k in

0 ≤ k ≤ l − 2, k ≡ l mod 2. This gives a total of
∑n

l=2

⌊
l
2

⌋
2l
(

n
l

)
different equations of the

form (3.1). However, if k = 0, multiplying all εi by −1 does not change the split, so we
have to subtract half of the splits for k = 0. This leads to a total of

n∑

l=2

⌊
l
2

⌋
2l

(
n
l

)
−
b n

2c∑

m=1

22m−1
(

n
2m

)

splits. This can be shown to equal (3.2).
It is clear that two of the splits are equivalent if and only if they have the same

cardinality for I and the same k. So there are
∑n

l=2

⌊
l
2

⌋
=

⌊
n2

4

⌋
equivalence classes. �

We now want to examine when two splits of the cube are compatible. According
to Proposition 3.15, a split of the cube is given by some set ∅ , I ⊂ [n], some vector
ε ∈ {+1,−1}I, and some 0 ≤ k ≤ |I| − 2. We define the sets I+ := {i ∈ I | ε(i) = +1},
I− := {i ∈ I | ε(i) = −1}, and I0 = [n] \ I; and we will abbreviate this split by (I+, I−, k).

If we now take two splits S 1 = (I+, I−, k) and S 2 = (J+, J−, l) of Cn, we can partition
I ∪ J into the three parts E := {i ∈ I ∪ J | ε1(i) = ε2(i)}, D := {i ∈ I ∪ J | ε1(i) = −ε2(i)}, and
Z := (I ∪ J) \ (E ∪D) = (I \ J)∪ (J \ I). With this notions, we can formulate the following
compatibility condition.

Proposition 3.17. Let S 1 = (I+, I−, k) and S 2 = (J+, J−, l) be two splits of the the
cube Cn. Then S 1 and S 2 are compatible if

2 |E| + |Z| ≤ k + l or(3.3)

2 |D| + |Z| ≤ |k − l| .(3.4)

Proof. According to the definition, the splits S 1 and S 2 are compatible if and only
if there does not exist a point x ∈ int Cn = (−1, 1)n such that

∑

i∈I+

xi −
∑

i∈I−

xi = k and(3.5)

∑

i∈J+

xi −
∑

i∈J−

xi = l .

For the rest of this proof, we abbreviate Iαβ = Iα ∩ Jβ for α, β ∈ {+,−, 0}, define
c := |I+0| + |I0+| + |I0−| + |I−0|, and assume without loss of generality that min(k, l) = l. By
adding and subtracting the Equations (3.5), we get the following system of equations,
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which is equivalent to (3.5).

2
∑

i∈I++

xi +
∑

i∈I+0∪I0+

xi − 2
∑

i∈I−−

xi −
∑

i∈I−0∪I0−

xi = k + l and(3.6)

2
∑

i∈I+−

xi +
∑

i∈I+0∪I0−

xi − 2
∑

i∈I−+

xi −
∑

i∈I−0∪I0+

xi = k − l .

Now one sees that for the existence of a point x ∈ (−1, 1)n that satisfies the first of
these equations, it is necessary that

2(|I++| + |I−−|) + c > k + l .(3.7)

Just as well, we get that for the existence of a point x ∈ (−1, 1)n that satisfies the second
equation of (3.6) it is necessary that

2(|I+−| + |I−+|) + c > k − l .(3.8)

(Recall that we assumed that k ≥ l.) This finishes the proof.
�

The second class of polytopes we will look at are products of two simplices. The
regular subdivisions of these polytopes are especially interesting since since their tight
spans are tropical polytopes; see Remark 2.6. We consider the k-simplex ∆k ⊆ Rk as
conv{0, e1, . . . , ek}.

Proposition 3.18. The splits of the product of simplices P := ∆k × ∆l are given by
the hyperplanes defined by∑

i∈A

xi −
∑

j∈B

x j = 0 and
∑

i∈A

xi +
∑

j∈B

x j = 1 ,(3.9)

where A and B are non-empty subsets of [k] and [k + l] \ [k], respectively.

Proof. First we remark that for all non-empty A ⊆ [k], B ⊆ [k + l] \ [k] the point x
defined by

xi =



1
2|A| , if i ∈ A ,

1
4(k−|A|) , if i ∈ [k] \ A ,

1
2|B| , if i ∈ B ,

1
4(l−|B|) , if i ∈ [k + l] \ ([k] ∪ B) ,

is in the interior of P since xi > 0 for all i and
∑

i∈[k] xi,
∑

i∈[k+l]\[k] xi < 1; and in both
hyperplanes defined by the Equations (3.9), since

∑
i∈A xi = 1/2,

∑
i∈B xi = 1/2. Hence all

those hyperplanes meet the interior of P.
It is easily seen that two vertices u = (x1, x2), v = (y1, y2) ∈ Rk × Rl of ∆k × ∆l

are connected by an edge if and only if x1 = y1 or x2 = y2. So the second of the
Equations (3.9) is a split by Corollary 3.2. Since only one of the sums in the first
equation changes by going from u to v, it can be seen as in the proof of Corollary 3.2
that this equation is also a split.

Let now H = {x ∈ Rk+l | ∑k+l
i=1 αixi = β} define a split of ∆k × ∆l for some αi, β ∈ R.

We can assume without restriction that the first non-zero αi is equal to 1. However,
since the matrix of vertices of a product of simplices is totally unimodular, all other
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non-zero α j has to be equal to ±1. By Lemma 3.27 below, there exists some vertex v
of ∆l such that H defines a split or a non-trivial face on ∆k × {v}. Since simplices have
no splits, H has to define a face of this facet. So we can conclude that we cannot
have αi = −α j for i, j ∈ [k] since H then would meet the interior of ∆k × {v}. The only
remaining possibilities for H are therefore the Equations (3.9) for arbitrary A or B. Since
for empty A or B those hyperplanes would not cut the interior of ∆k × ∆l, the proof is
complete. �

Remark 3.19. (a) The first part of the proof shows that the splits defined by
the two hyperplanes (3.9) for the same A and B are incompatible.

(b) By considering ∆(1, k + 1) = conv{e1, . . . , ek+1} ⊂ Rk+1 instead of ∆k as the stan-
dard simplex, one can write all splits of ∆k × ∆l � ∆(1, k + 1) × ∆(1, l + 1) in the
more symmetric form ∑

i∈A

xi =
∑

j∈B

x j(3.10)

for all non-trivial subsets A ⊆ [k + 1], B ⊆ [k + l + 2] \ [k + 1]. Note that taking
the complements of A and B yields the same splits (but no other choice).

Corollary 3.20. The product ∆k ×∆l of two simplexes has 2 · (2k − 1) · (2l − 1) splits
which come in dk · l/2e equivalence classes.

Proof. The splits are given by the Equations (3.9). Since we can choose arbitrary
nonempty sets A ⊆ [k] and B ⊆ [k + l] \ [k] and combine them in each way we get
(2k − 1) · (2l − 1) splits of each type. This shows the claim for the number of splits.

For the proof of the second part, we use the alternative characterization of the
splits in Remark 3.19 (b). Consider two nontrivial subsets A, A′ ⊂ [k + 1], B, B′ ⊂
[k + l + 2] \ [k + 1]. If |A| = |A′| and |B| = |B′|, or |A| = k + 1 − |A′| and |B| = l + 1 − |B′|
the splits are equivalent. So we get kl/2 equivalence classes, except in the case in which
both k and l are odd, where we have (kl + 1)/2 classes. �

Also for the product of two simplices, we want to give a condition when two splits
are compatible. According to Remark 3.19 (b), a splits of the product of a k- and an
l-dimensional simplex is defined by two sets ∅ , A ( [k+1] and ∅ , B ( [k+ l+2]\ [k+1]
and this representation is unique up to simultaneously taking the complements of A
and B. We will write S = (A, B) for a split defined this way.

Proposition 3.21. Let S = (A, B) and T = (C,D) be two splits of the product
∆(1, k + 1) × ∆(1, l + 1). Then S and T are compatible if and only if either

A ⊆ C and D ⊆ B, or(3.11)

C ⊆ A and B ⊆ D .

Proof. We define the sets

A1 = A \C, A2 = C \ A, A3 = A ∩C, A4 = [k + 1] \ (A ∪C),
B1 = B \ D, B2 = D \ B, B3 = B ∩ D, B4 = [l + k + 2] \ [k + 1] \ (B ∪ D) ;

and
Xi =

∑

i∈Ai

xi, Yi =
∑

i∈Bi

yi .
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Then the hyperplanes for S and T are defined by

X1 + X3 = Y1 + Y3 and X2 + X3 = Y2 + Y3 ,(3.12)

respectively. If we subtract these two equations, we get

X1 − X2 = Y1 − Y2 .(3.13)

We will first proof that the conditions (3.11) are sufficient for the compatibility. So
suppose S and T were not compatible, A ⊆ C, and D ⊆ B. This implies that for any
x ∈ HS ∩ HT we have X1 = Y2 = 0. From this and Equation (3.13) we can further
conclude that X2 = Y1 = 0. So xi = 0 for all i ∈ A2 ∪ B1. Since x should not be in the
boundary, this implies that A2 and B1 are empty, and so S = T . The second case follows
similarly.

For the necessity, assume that (3.11) does not hold. This is equivalent to

A1 , ∅ or B2 , ∅, and(3.14)

A2 , ∅ or B1 , ∅.
We will now distinguish several cases, depending on how many of the sets A j, B j are

empty. In each case we will give a point x ∈ relint(∆(1, k + 1) × ∆(1, l + 1)) ∩ HS ∩ HT .
This will be done by assigning values in (0, 1) to all X j,Y j for which A j, B j, respectively,
are non-empty such that (3.13) holds and

∑
X j =

∑
Y j = 1. The explicit coordinates

of x are then obtained by setting xi =
X j

|A| j , xi =
Y j

|B| j , for i ∈ A j, i ∈ B j, respectively.

Case 1: Non of the sets A j, B j is empty. Then we simply set X j,Y j = 1
4 for all

j ∈ {1, 2, 3, 4}.
Case 2: One of the sets A j, B j is empty. We assume without loss of generality

that A1 = ∅. Then we set X3 = 1
2 , X4 = Y2 = 3

8 , Y1 = Y3 = 1
4 , and X2 = Y4 = 1

8 .
Case 3: Two of the sets A j, B j are empty. As in Case 2, we assume that one of these

sets is A1. With our assumption (3.14), and taking into account that neither A, B,C,D
nor their complements (in [k + 1] and [k + l + 2] \ [k + 1], respectively) can be empty, we
get the following possibilities:

. A1 = A2 = ∅: Set X3 = X4 = 1
2 and Yi = 1

4 for all i ∈ {1, 2, 3, 4}.
. A1 = B1 = ∅: Set X3 = Y3 = 1

2 and X2 = X4 = Y2 = Y4 = 1
4 .

. A1 = B3 = ∅: Set X4 = Y2 = 1
2 and X2 = X3 = Y1 = Y4 = 1

4 .

. A1 = B4 = ∅: Set X3 = Y2 = 1
2 and X2 = X4 = Y1 = Y3 = 1

4 .

Case 4: Three of the sets A j, B j are empty. We again assume that A1 is one of the
sets. It remain three possibilities:

. A1 = A2 = B3 = ∅: Set X4 = 2
3 and X3 = Y1 = Y2 = Y4 = 1

3 .

. A1 = A2 = B4 = ∅: Set X3 = 2
3 and X4 = Y1 = Y2 = Y3 = 1

3 .

. A1 = B3 = B4 = ∅: Set Y2 = 2
3 and X2 = X3 = X4 = Y1 = 1

3 .

Case 5: Four of the sets A j, B j are empty. By assuming that A1 is one of them, this
yields A1 = A2 = B3 = B4 = ∅. We set X3 = X4 = Y1 = Y2 = 1

2 .
�
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Example 3.22. Define Ai := {1, . . . , i} and B j := B j = {k + 1, . . . , k + j}. Then it can
be shown that the set

S :=
{
(Ai, B j)

∣∣∣ 1 ≤ i ≤ k, 1 ≤ j ≤ l
}

of splits of P := ∆(1, k + 1)×∆(1, l + 1) is weakly compatible. Since |S| = k× l = |Vert P| −
dim P − 1, the split subdivision ΣS(P) defined by S is a triangulation by Corollary 2.29.

This triangulation is called the staircase triangulation; see Billera, Cushman, and
Sanders [6]. In fact, for any ordering of the vertices of ∆k and any ordering of the
vertices of ∆l there exists such a split triangulation. See Figure 3.1 for examples of tight
spans of staircase triangulations.

Figure 3.1. Tight spans of staircase triangulations of ∆4 × ∆2 and ∆4 × ∆3.

As a last example, we will examine the product ∆(k, n) × ∆(l,m) of two general
hypersimplices.

Proposition 3.23. The splits of the product of two hypersimplices ∆(k, n) × ∆(l,m)
are given by the hyperplanes defined by∑

i∈A

xi +
∑

j∈B

x j = α ,(3.15)

where A ⊂ [n], B ⊂ [n + m] \ [n], α ∈ N and max(0, k − (n − |A|)) + max(0, l − (m − |B|)) <
α < min(k, |A|) + min(l, |B|).

Proof. We first examine when a hyperplane defined by Equation (3.15) meets the
interior of P := ∆(k, n)×∆(l,m). A hyperplane H meets the interior of a polytope if and
only if there exist vertices of P on either side of H. In order to have a vertex v of P with∑

i∈A vi +
∑

j∈B v j > α, it is necessary and sufficient that α < min(k, |A|) + min(l, |B|) since
this is the maximum of the left side of Equation (3.15) taken over all vertices of P. In
the same manner, one sees that α > max(0, k− (n− |A|)) + max(0, l− (m− |B|)) is necessary
and sufficient for the existence of some vertex v of P with

∑
i∈A vi +

∑
j∈B v j < α. This

shows that a hyperplane defined by (3.15) meets the interior of P if and only if the
condition of the proposition is satisfied.

It follows from Corollary 3.2 that the hyperplanes (3.15) define splits. So it remains
to proof that all splits of P have to be of this form.

Let H be defined by
∑

i∈[n] αixi+
∑

i∈[m+n]\[n] βixi = 0 such that H defines a split of P. By
Lemma 3.27 (b), for each vertex v of ∆(k, n) we get that H defines a split or a non-trivial
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face of {v} × ∆(l,m). We can argue as in the proof of Proposition 2.39 that there exists
at least one such v such that H actually defines a split; of course the same holds of one
exchanges the role of the factors. So by our characterization of splits of hypersimplices
in Proposition 2.39, this implies that H has to be of the form

∑
i∈A xi + β

∑
j∈B x j = α

for some α, β ∈ R. By possibly exchanging the factors, we can assume that β ≥ 1.
However, then any edge from (eI , eJ) to (eI , eJ∪{i}\{ j}) is met in the interior if we take i ∈ B
and j < B. �

3.3. Polytope Constructions and Splits

In this section, we will describe how splits behave under some well-known polytope
constructions. A very simple construction is the pyramid Pyr P ⊂ Rd+1 × R of P ⊂ Rd+1.
It is derived as the convex hull of P × {0} and some point v ∈ Rd+1 × (R \ {0}). Likewise,
the bipyramid BiPyr P ⊂ Rd+1×R of P is defined as the convex hull of P×{0}, some point
v ∈ Rd+1 × R>0, and some point v′ ∈ Rd+1 × R<0. For a simpler notation, we identify P
with P × {0} and splitting hyperplanes H of P with H × {0}.

Proposition 3.24. Let P be a polytope and S the set of all splits of P.

(a) The splits of a pyramid Pyr P over P with additional vertex v are induced by the
hyperplanes H = lin(HS ∪ {v}) for all S ∈ S.

(b) The splits of a bipyramid BiPyr P over P with additional vertices v, v′ are induced
by all hyperplanes H = lin(HS ∪ {v}) with v′ ∈ H for all S ∈ S and by lin P.

Proof. First we remark that in all any hyperplane H that induces a split on Pyr P
or BiPyr P has to meet relint P. Suppose that is not the case. Then v (or v′) is on one
side of H and P on the other and each edge (v,w) for some vertex w of P is cut in the
interior. Now we proceed with the proof of (a) and (b)

(a) Since P is a facet of Pyr P, by Corollary 2.4 and our considerations above, each
splitting hyperplane HS of Pyr P has to induce a split on P. So, if v < HS we
can take a vertex w of P on the opposite side of HS as v, and (v,w), which is
an edge of Pyr P, is cut in the interior. So the given splits are the only possible
ones. To see that all those are splits recall that the edges of Pyr P are the edges
of P together with the edges (v,w) for all vertices w of P. Non of these edges
can be cut by HS , the former because HS defines a split on P, the latter because
v ∈ HS .

(b) Since H has to meet relint P, either H ∩ P = P, in which case we have H = lin P,
or H induces a split on P. So again, there are only the hyperplanes of the form
H = aff(HS ∪ {v}) or H = aff(HS ∪ {v′}) left. But if these are not equal, we can
argue as above to find an edge that H meets in its interior.

�

In terms of split polyhedra, this means that SplitPoly(P) � SplitPoly(Pyr P).
The join of two polytopes P1 ⊂ Rd1+1, P2 ⊂ Rd2+1 is defined as the common convex

hull of π1(P1) and π2(P2) in Rd1+d2+2, where πi : Rdi+1 → Rd1+d2+2 are embeddings such that
the affine spaces π1(Rd1+1) and π2(Rd2+1) are skew, that is, they have empty intersection
and are not parallel. The dimension of P1 ∗ P2 is d1 + d2 + 1, providing that dim Pi = di.
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Proposition 3.25. Let P = P1 ∗ P2 be the join of two polytopes P1 and P2. Then
a subdivision of P is a split if and only if it is a join of a split of P1 and the trivial
subdivision of P2, or it is a join of a split of P2 and the trivial subdivision of P1.

Proof. By [19, Theorem 4.3.6], the join

Σ1(P1) ∗ Σ2(P2) := {F1 ∗ F2 | F1 ∈ Σ1(P1), F2 ∈ Σ2(P2)}

is a subdivision of P, and all subdivisions of P are of this form for some subdivisions
of P1, P2. However, a subdivision is a split if and only if it has exactly two maximal
faces, and for a join Σ∗Σ′ of subdivisions this is the case if and only if Σ has two maximal
faces and Σ′ two, or the other way around. �

For other constructions, for example for prisms and products, it is much harder to
say something about the splits. We consider the following example.

Example 3.26. Let S be a square and Q another quadrangle, which is not a paral-
lelogram. Obviously, S and Q both have two splits, corresponding two the two pairs of
non-adjacent vertices. However, the prism over S has more splits then the prism over Q:
The hyperplane spanned by one edge in the upper part and the opposite edge in the
lower part is a split of S but not of Q since we assumed that these two edges are not
parallel; see also Example 8.36

So there is no chance to get all splits of a product P1 × P2 by simply examining all
splits of the factors P1 and P2. However, we can give at least one sufficient and one
necessary condition:

Lemma 3.27. Let P1 and P2 be two polytopes and P = P1 × P2 ⊆ Rd1+1 × Rd2+1 their
product.

(a) If H defines a split of P1, then H × Rd2+1 defines a split of P.
(b) If H defines a split S of P, then for all vertices (v1, v2) of PS the hyperplane H

defines a split or a non-trivial face of {v1} × P2 and of P1 × {v2}.
Proof. (a) All edges of P are of the form {v1} × E2 or E1 × {v2}, where v1, v2,

E1, E2 are vertices and edges of P1, P2, respectively. Obviously, no edge of
the form {v1} × E2 can be met by H × Rd2+1 in the interior, since {v1} × E2 is
parallel to H × Rd2+1. For the edges of the form E1 × {v2} let E1 := conv{v, v′}
and H = {x ∈ Rd1+1 | 〈a, x〉 = 0}, so H × Rd2+1 is given by 〈(a, 0), y〉 = 0. If
now E1 × {v2} would be met in the interior by H × Rd2+1, this would mean that
〈(a, 0), (v, v2)〉 > 0 and 〈(a, 0), (v′, v2)〉 < 0, or vice versa, which is equivalent to
〈a, v〉 > 0 and 〈a, v′〉 < 0. This is a contradiction to the assumption that H
defines a split on P1.

(b) For all vertices (v1, v2) of PS we have that {v1}×P2 and P1×{v2} are faces of P. So,
by Proposition 3.1, the hyperplane H has to define a split or a face of {v1} × P2

and P1 × {v2}. Since (v1, v2) ∈ H these faces has to be non-trivial.
�
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3.4. Hyperplane Arrangements

Since splits are induced by hyperplanes, given a split system S one can form an
associated hyperplane arrangement. This will be studied in this section. For the theory
of hyperplane arrangements see for example the monograph of Orlik and Terao [72].
We first recall some basic definitions. A hyperplane arrangement A in Rd is a collection
of (d − 1)-dimensional affine subspaces. It induces a polyhedral subdivision ∆A of Rd

(potentially with additional vertices) which is defined as the common refinement of the
subdivisions ∆H :=

{{x ∈ Rd | a · x > b},H, {x ∈ Rd | a · x < b}} for all H ∈ A where
H = {x ∈ Rd | a · x = b}. A hyperplane arrangement A is called central if

⋂
H∈A , ∅.

If we now consider a polytope P and a set S of splits for P we can form the associated
hyperplane arrangement A(S) := {HS | S ∈ S}. Note, that in contrast to previous
assumptions, in this section, we assume that P ⊂ Rd is d-dimensional, hence splits are
defined by affine hyperplanes.

The following proposition gives us the connection between split subdivisions of P
and the corresponding hyperplane arrangements.

Proposition 3.28. Let P ⊂ Rd be a d-dimensional polytope and S a weakly com-
patible split system for P. Then the following holds:

(a) The tight span TS(P) of S is (isomorphic to) a subcomplex of the dual complex
of ∆A(S).

(b) If S is totally incompatible, then AS is central, and TS(P) is isomorphic to the
dual complex of ∆A(S).

Proof. (a) Since S is weakly compatible, the subdivision ΣS(P) is the common
refinement of the splits S ∈ S. So the interior faces of ΣS(P) are the cells C ∩ P
where C is some cell of ∆A(S). Since, obviously, the inclusion relation does
not change by cutting with P we get a combinatorial isomorphism between the
interior faces of ΣS(P) and such cells C of ∆A(S) with C ∩ P , ∅. The claim
follows by dualizing.

(b) That S is totally incompatible means that the arrangement A(S) is central and
that

⋂
S∈S HS ⊂ P. This also implies that for all non-empty C ∈ ∆A(S) the face

C ∩ P is non-empty. Together with (a), this shows that TS(P) is isomorphic to
the entire dual complex of ∆A(S).

�

Corollary 3.29. The tight span of a weakly compatible, totally incompatible split
system is a zonotope and hence has a unique maximal face.

Proof. This follows from the fact that a central hyperplane arrangement is dual
to a zonotope. See for example [97, Theorem 7.16]. �

Example 3.30. (a) Let P be a pentagon and S a system of two weakly compat-
ible splits of P (see Figure 3.2). Then the dual complex of ∆A(S) is a quadrangle,
and the subcomplex corresponding to the tight span of S consists of two adja-
cent edges.

(b) Let P be an octahedron (� ∆(2, 4)) and S a system of two splits for P. Then
the dual complex of A(S) is again a quadrangle, and, since the split system is
totally incompatible, it is equal to the tight span of S.
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Figure 3.2. Two compatible splits of a pentagon, their tight span, and
the corresponding hyperplane arrangement.

As an application of Proposition 3.28 and Corollary 3.29, we give a new and much
simpler proof of the following statement which was originally given by Huber, Koolen,
and Moulton [51, Theorem 1.2].

Corollary 3.31. The tight span of a weakly compatible, incompatible split system
of ∆(2, n) is a zonotope and hence has a unique maximal face.

Proof. By Proposition 8.27, a weakly compatible and incompatible split system
of ∆(2, n) is also totally incompatible. Now use Corollary 3.29. �

Furthermore, we can now give a new proof and a slight strengthening of Theo-
rem 2.35.

Proposition 3.32. Let P be a d-dimensional polytope and S a weakly compatible
split system for P. Then the tight span TS(P) is a subcomplex of the boundary complex
of a (d + 1)-dimensional zonotope and hence a zonotopal complex.

Proof. By Proposition 3.28 (a), the tight span of S is the subcomplex of the dual
complex of ∆A(S). By homogenizing the hyperplane arrangement A(S), we get a central
hyperplane arrangement A′ in Rd+1. The dual complex of ∆A′ is a zonotope Z, and the
dual complex of ∆A(S) can be considered as a subcomplex of the dual complex of ∆A′ .
So also the tight span TS(P) is isomorphic to this subcomplex of the zonotope Z. �

In Question 2.66, we asked which hyperplane arrangements are the arrangements of
all split hyperplanes of some polytope. Here we will give an answer to a slightly different
question: Which hyperplane arrangements are arrangements of weakly compatible splits
systems for some polytope?

Theorem 3.33. For each affine hyperplane arrangement A there exists some poly-
tope P and a weakly compatible split system S of P such that the tight span TS(P) is
isomorphic to the dual complex of ∆A.

Proof. We will assume that ∆A does not contain any zero-dimensional cell: If that
would be the case, we could just take A × R := {H × R | H ∈ A} instead of A, these
two arrangement obviously have the same dual complex and ∆A×R does not contain a
zero-dimensional cell. They key observation is the following.
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Lemma 3.34. Let P ⊆ Rd be a simplicial, full-dimensional polytope, S a weakly
compatible split system for P and H some hyperplane with H∩int P , ∅. If the polyhedral
complex ∆A corresponding to the hyperplane arrangement A := A(S) ∪ {H} does not
contain a zero-dimensional cell, then there exists some simplicial polytope P̄ such that H
induces a split S on P̄ and S ∪ {S } is a weakly compatible split system for P̄.

Proof. Let us first consider the case that H induces a split S on P. Then the set
S∪{S } is automatically weakly compatible by Corollary 3.7: Since the complex ∆A does
not contain a zero-dimensional cell, the only edges of ΣS(P) which could be met in the
interior are those in the boundary of P. Since P is simplicial all those edges are edges
of P, but these cannot be met in the interior since S is a split.

Now we assume that H does not induce a split on P. Then, by Corollary 3.7, there
exists some edge E of ΣS(P) such that relint E ∩ H = {p} for some p ∈ Rd. We consider
the affine space A = H ∩ {H ∈ A | p ∈ H}. By assumption, the space A is at least
one-dimensional. We now move p a little bit outside of P to a point p̃ which is still in A
and define P̃ = conv(P ∪ { p̃}). (Note that this point p̃ is automatically beyond E in the
sense of [97, Section 3.1], so the combinatorial type of P̃ does not depend on the choice
of p̃.)

The new polytope P̃ is still simplicial, and for each facet F of P that contains E,
there occur n − 2 new edges. Non of these edges is cut in the interior by any splitting
hyperplane HS , since this would means that HS would have cut the simplex F in its
interior. We can do this construction again if there would be some other edge E′ with
relint E ∩ H , ∅ and finally arrive at our desired polytope P̄. �

We now take an arbitrary hyperplane H ∈ A and define P as the union of two
(full-dimensional) simplices glued together at some facet contained in H such that ad-
ditionally for all H′ in A we have H ∩ int P , ∅. This polytope obviously satisfies
the hypothesis of Lemma 3.34, and we can piecemeal add all other hyperplanes using
Lemma 3.34. �

Corollary 3.35. Let A be a hyperplane arrangement such that ∆A does not contain
a zero-dimensional cell. Then there exist a polytope P and a weakly compatible splits
system S of P such that ∆A = ∆A(S).

3.5. Oriented Matroids

In this section, we will investigate splits of oriented matroids. For the definitions,
notations, and results on oriented matroids, we refer to the monograph [12] by Björner,
Las Vergnas, Sturmfels, White, and Ziegler. We summarize the most important notions.

For sign vectors X = (Xi),Y = (Yi) ∈ {+,−, 0}n, we define −X, X ◦ Y ∈ {+,−, 0}n as

(−X)i = −Xi and (X ◦ Y)i =


Xi, if Xi , 0,

Yi, otherwise.

By sgn : R→ {+,−, 0}, x 7→


+, if x > 0,
−, x < 0,
0, if x = 0,

we denote the signum function.

The support of a (sign) vector is the set of its nonempty entries.
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Definition 3.36. An oriented matroid M on the ground set E is defined by a set
L ⊆ {+,−, 0}|E| of covectors satisfying the following axioms:

(a) 0 ∈ L,
(b) X ∈ L implies −X ∈ L,
(c) X,Y ∈ L implies X ◦ Y ∈ L, and
(d) for X,Y ∈ L and some i with Xi = −Yi , 0 there exist some Z ∈ L with Zi = 0

and Z j = (X ◦ Y) j = (Y ◦ X) j for all j with X j = 0 or X j , Y j.

The cocircuits of M are those covectors with minimal nonempty support. The set
of cocircuits is denoted by C. A face of M is a covector F ∈ {+, 0}|E|, a facet of M is
a face which is also a cocircuit, and an edge of M is a face with exactly two positive
entries.

The most important examples of oriented matroids are those arising from finite
point configurations. The proof of the following proposition is easy and can be found
in standard literature about oriented matroids (see e.g., [12, Section 1.2 (a)]).

Proposition 3.37. Let A = {v1, . . . , vn} be a set of vectors in Rr+1. Then the set

L(E) : =
{
(sgn(〈a, vi〉))1≤i≤n

∣∣∣ a ∈ Rr+1
}

is finite and the set of covectors of an oriented matroid M(A).

The faces of M(A) are those X ∈ {+, 0}|A| with Xi =


+ if vi ∈ F,

0 otherwise,
for some face F

of convA and the same holds for the facets and edges.

An oriented matroid which can be received in this fashion is called realizable. If we
take as A the set of vertices of an r-dimensional polytope P ⊂ Rr+1, we can define the
oriented matroid M(P) :=M(A) of a polytope P.

Now we are ready to define splits for arbitrary acyclic oriented matroids, motivated
by Proposition 3.1.

Definition 3.38. A cocircuit C of an acyclic oriented matroidM is called a split if
the restriction of C to each facet F ofM is either a face of F or a split of the restriction
of M to F.

We also get an oriented matroid generalization of some of the equivalences in Propo-
sition 3.1:

Proposition 3.39. For an oriented matroidM and a cocircuit C ofM the following
are equivalent:

(a) The restriction of C to all edges E ofM is a face ofM or a split of the restriction
of M to E,

(b) the restriction of C to all faces FofM is a face ofM or a split of the restriction
of M to F, i.e., C is a split of M,

(c) the restriction of C to all facets F ofM is a face ofM or a split of the restriction
of M to F.

We now compare the notion of a split of a polytope P ⊂ Rd+1 and the corresponding
oriented matroid M(P). Each hyperplane H = {x ∈ Rd+1 | 〈a, x〉 = 0} for some a ∈ Rd+1
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defines a covector of M(P) as in Proposition 3.37. One sees that only hyperplanes
corresponding to cocircuits can define splits, because the hyperplanes corresponding
to non-maximal covectors would meet an edge non-trivially. So, by Proposition 3.1 in
connection with Proposition 3.37, we have that a hyperplane H defines a split of P if
and only if for the corresponding cocircuit C(H) the restriction of C to each facet F
of M(P) is either a face of F or a split of the restriction of M(P) to F.

Proposition 3.40. Let P be a polytope. A hyperplane H induces a split on P if and
only if the corresponding cocircuit C(H) defines a split on M(P).

Corollary 3.41. Polytopes with the same oriented matroid have the same splits.

Even more is true: Also the split complex and the weak split complex of a polytope P
we defined in Section 2.4 can be obviously generalized to oriented matroids.

Proposition 3.42. The split complex Split(P) and the weak split complex Splitw(P)
of a polytope P only depend on the oriented matroid of P.

Proof. Let S 1 and S 2 be two incompatible splits of P. Then there exists a point
x ∈ relint P ∩ HS 1 ∩ HS 2 . Here HS i denotes the split hyperplane of the split S i. The
existence of x is equivalent to the existence of a circuit C in the oriented matroid of P
such that C+ is supported on vertices of P lying on HS 1 , that C− is supported on vertices
of P lying on HS 2 , and that C+ ∪C− is not contained in any facet of P. Since the facets
are precisely the positive cocircuits, this is a property of the oriented matroid of P. This
shows the claim for the split complex.

The statement for the weak split complex follows from the fact that one can construct
common refinements of given subdivisions while only knowing the oriented matroid of
the underlying polytope [19, Corollary 4.1.43]. �

With the description of splits in Proposition 3.39 (a), one gets a simple algorithm
for finding splits of an oriented matroid M: For each cocircuit C of M check for each
edge {i, j} of M if Ci = C j. Then C is a split if and only if this is true for all edges.

If we have an oriented matroidM with, say, e edges and c cocircuits this näıve algo-
rithm for finding all splits ofM runs in time O(e ·c). Of course, by Proposition 3.40, this
algorithm can be used also for polytopes. In this case, the algorithm was implemented
by the author and is part of the software system polymake [37].

3.6. Combinatorial Description of Splits

As we have seen in Section 2.6, splits of the second hypersimplex ∆(2, n) have a very
easy combinatorial description as bipartitions of the set [n]. The notions of compatibility
and weakly compatibility can also be described combinatorially; see Corollary 2.46 and
Proposition 2.47. In this section, we try to find similar descriptions for general polytopes.

So let P be a polytope and HS = {x ∈ Rd+1 | 〈a, x〉 = 0} a splitting hyperplane. We
define H+ = {x ∈ Rd+1 | 〈a, x〉 ≥ 0} and H− = {x ∈ Rd+1 | 〈a, x〉 ≤ 0}. The combinatorial
description of the split S is now given by two disjoint subset LS , RS of Vert P such that

LS = {v ∈ Vert P | 〈a, v〉 > 0} and RS = {v ∈ Vert P | 〈a, v〉 < 0}.
This description is motivated by the oriented matroid point of view (see Section 3.5);
the sets LS and RS correspond to the elements of C(H) with Ci = + and Ci = −,
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respectively. Of course, one gets the same split by switching LS and RS . We denote the
set (Vert P) \ (LS ∪ RS ) = (Vert P) ∩ HS by ES . By the definition of split, we have that
neither LS , ES , nor RS can be empty. We identify S with the set {LS ,RS }, and if A = LS

wet A′ := RS .
To get a combinatorial description of compatibility we need the following lemma.

Lemma 3.43. Let S and T be two splits of a polytope P and A ∈ S , B ∈ T with A ⊂ B.
Then B′ ⊂ A′.

Proof. We can assume without loss of generality that A = LT and B = LS , hence
A′ = RT and B′ = RS . So we have LT ⊂ LS , which is equivalent to LT ∩ (ES ∪ RS ) = ∅.
So RS ∩ LT = ∅, and since RS ⊂ RT is equivalent to RS ∩ (ET ∪ LT ) = ∅, it remains to
show that RS ∩ ET = ∅. Suppose now there exists a vertex v of P with v ∈ RS ∩ ET .
Since LT , ∅ and LT ⊂ LS , there exists another vertex v′ of P with w ∈ LT ∩ LS . Since v
and v′ are on different sides of HS , there exists unique point x with conv{v, v′}∩HS = {x}.
Obviously, since v ∈ H+

T and v′ ∈ int H+
T , we have that x ∈ int H+

T . However, since HS

defines a split of P, by Proposition 3.1 (f), HS ∩ P = conv(Vert P ∩ HS ) = conv ES . But
since LT ∩ ES = ∅, we have HS ∩ P ⊂ H−T , contradicting x ∈ P ∩ HS ∩ int H+

T . �

Note that Lemma 3.43 tells us that in the following proposition the statements in
parenthesis are equivalent to those previous to them. The proposition gives a combina-
torial condition for two splits to be compatible.

Proposition 3.44. Two splits S and T of a polytope P ⊂ Rd+1 are compatible if and
only if one of the four conditions

LS ⊂ LT (or RT ⊂ RS ),

LS ⊂ RT (or LT ⊂ RS ),

LT ⊂ LS (or RS ⊂ RT ), or

RT ⊂ LS (or RS ⊂ LT ),

is satisfied or, equivalently, there exists some A ∈ {LS ,RS } and some B ∈ {LT ,RT } such
that

A ⊂ B (or B′ ⊂ A′).

Proof. Suppose first that S and T are compatible. The hyperplanes HS and HT

partition the space Rd+1 into four cones H+
S ∩H+

T , H+
S ∩H−T , H−S ∩H+

T , and H−S ∩H−T . Since
S and T are compatible at least one of these four cones cannot meet the interior of P
because otherwise HS ∩HT would also. We assume that this is the case for C := H+

S ∩H−T ,
so we have C ∩ relint P = ∅ and also P ∩ int C = ∅. We will now prove that LS ⊂ LT .

So suppose that there is some vertex v of P which is in LS but not in LT . This
means that either v ∈ LS ∩ RT ⊂ int C, which is impossible, or that v ∈ LS ∩ ET . By
Lemma 3.43, we get some vertex v′ which is in RT but not in RS and it follows similarly
that v′ ∈ RT ∩ ES . Consider now some point x in the relative interior of conv{v, v′}.
Since v ∈ LS and v′ ∈ ES , we get that x ∈ int H+

S , and since v ∈ ET and v′ ∈ RT , we get
that x ∈ int H−T . So we have x ∈ int C ∩ P, which is a contradiction.

Now suppose that for two splits S and T we have LS ⊂ LT and RT ⊂ RS , and assume
that S and T are not compatible. We look at the polytopes PS (= HS ∩P) and PT which
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has to meet in their relative interior. This means that there exists some vertex v1 of PS

which is in LT and some vertex v2 which is in RT , since otherwise the interior of PT would
be contained in H+

S or H−S . So we have v1 ∈ LT ∩ ES ; hence neither LT ⊂ LS nor LT ⊂ RS ,
and v2 ∈ RT ∩ ES ; hence neither RT ⊂ LS nor RT ⊂ RS . This shows the claim. �

For the weakly compatible case, it is much more complicated to give a simple com-
binatorial criterion. A first step in this direction can be given by using Corollary 3.13
and Lemma 3.12.

Proposition 3.45. (a) Let S and T be two splits of a d-dimensional poly-
tope P. Then S and T are not weakly compatible if they are incompatible and
|ES ∩ ET | < d − 1.

(b) Let S be an incompatible split system for a d-dimensional polytope P. Then S
is not weakly compatible if

∣∣∣⋂S∈S ES

∣∣∣ < d + 1 − |S|.
In the case of a three-dimensional polytope, we also have the converse of Proposi-

tion 3.45 (a).

Proposition 3.46. Let S and T be splits of a d-dimensional polytope P with d ≤ 3.
Then S and T are weakly compatible if and only if they are compatible or we have
|ES ∩ ET | ≥ d − 1.

Proof. For one- or two-dimensional polytopes there is nothing two show, since one-
dimensional polytopes have no splits, and there are no splits systems of two-dimensional
polytopes that are weakly compatible and incompatible; see Remark 3.10. So let P be
three-dimensional and S and T two weakly compatible splits with |ES ∩ ET | ≥ d− 1 = 2.
Then the two planes HS and HT meet in a line, and HS ∩ HT ∩ Vert P has at least two
points. Since P is convex, these can only be the two endpoints of the line segment
HS ∩ HT ∩ P. So S and T are weakly compatible. �

This observation can be used to provide an algorithm that computes the split sub-
divisions of a three-dimensional polytope.



CHAPTER 4

Totally Splittable Polytopes

This chapter is joint work with Michael Joswig [48]. It is devoted to the investigation
of totally splittable polytopes, that is, those polytopes for which each triangulations is
a refinement of splits. As can be expected, the assumption of total splittability restricts
the combinatorics of P drastically. We prove that the totally splittable polytopes are
the simplices, the polygons, the regular cross polytopes, the prisms over simplices, or
joins of these. Interestingly, this classification seems to yield precisely those infinite
families of polytopes for which the secondary polytopes are known.

This is how the proof (and thus this chapter) is organized: It will frequently turn out
to be convenient to phrase facts in terms of a Gale dual of a polytope. Hence we begin
our paper with a short introduction to Gale duality and chamber complexes. The first
important step towards the classification is the easy Proposition 4.8 which shows that
the neighbors of a vertex of a totally splittable polytope must span an affine hyperplane.
Then we observe that whenever P is a prism over a (d − 1)-simplex or a d-dimensional
regular cross polytope there is no place for a point v outside P such that conv(P ∪ {v})
is totally splittable provided that d ≥ 3. In this sense, prisms and cross polytopes are
maximally totally splittable. It is clear that the case of d = 2 is quite different; and
it is one technical difficulty in the proof to distinguish between polygons and higher
dimensional polytopes. The next step is a careful analysis of the Gale dual of a totally
splittable polytope which allows to recognize a potential decomposition as a join. And
a final reduction argument allows to concentrate on maximally totally splittable factors,
which then can be identified again via their Gale duals.

4.1. Splits and Gale Duality

LetA be a configuration of n (not necessarily distinct) non-zero vectors in Rd+1 which
linearly spans the whole space. We consider the n× (d + 1)-matrix V whose rows are the
points in A and assume that V has full rank. As we have seen in Section 3.5, such a
vector configuration gives rise to an oriented matroid. For a linear form a ∈ (Rd+1)? we
have a covector C? ∈ {0,+,−}V by

C?(v) :=



0 if av = 0 ,
+ if av > 0 ,
− if av < 0 .

For ε ∈ {0,+,−} we let C?
ε := {v ∈ V |C?(v) = ε}, and we call the multiset C?

0 the support
of C?.

Now consider the n× (n− d − 1)-matrix V? of full rank n− d − 1 satisfying VTV? = 0;
that is, the columns of V? form a basis of the kernel of VT. Then the configuration of row
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62 4. TOTALLY SPLITTABLE POLYTOPES

vectors of V? is called a Gale dual of V. The Gale dual of V is uniquely determined up
to affine equivalence. Each vector v ∈ V corresponds to a row vector v? of V?, called the
vector dual to v. Throughout, we will assume that all dual vectors are either zero or have
unit Euclidean length. If v? is zero, all vectors other than v span a linear hyperplane
not containing v. We call V proper if V? does not contain any zero vectors. For the
remainder of this section we will assume that V is proper whence V? can be identified
with a configuration of n points on the unit sphere Sn−d−2. Notice that these n points are
not necessarily pairwise distinct, even if the vectors in V are. The connection between
Gale duality and oriented matroids is the following: The circuits of V are precisely the
cocircuits of V? and conversely.

Now let P be a d-dimensional polytope in Rd with n vertices. By homogenizing the
vertices Vert P, we obtain a configuration VP of n non-zero vectors in Rd+1 which positively
span the whole space. The cocircuits of VP are given by the linear hyperplanes spanned
by vectors in VP. The vector configuration VP is proper if and only if P is not a pyramid,
and we will assume that this is the case. The Gale dual of P is the spherical point
configuration Gale(P) := V?

P , which again is unique up to (spherical) affine equivalence.
See Figure 4.1 for an example.
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5

Figure 4.1. Pentagon and Gale dual. Corresponding vertices and dual
vectors are labeled alike.

Example 4.1. The matrices

V :=



1 1 0
1 0 2
1 −1 1
1 −1 0
1 0 −1


and V? :=



−1/3 −1
2/3 1
−4/3 −1

1 0
0 1



are Gale duals of each other. The rows of the matrix V are the homogenized vertices of
the pentagon shown to the left in Figure 4.1. The Gale dual obtained from projecting V?

to S1 is shown to the right.
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We now intend to study the polytopal subdivisions of our polytope P via Gale
duality. Fix a Gale dual G := Gale(P). Each subset I ⊆ [n] corresponds to a set of
(homogenized) vertices VI. We set I? := [n] \ I and V?

I := {v?i | i ∈ I}. Then the set VI

affinely spans Rd if and only if the duals of the complement, that is, the set

V?
I? =

{
v?i

∣∣∣ i ∈ [n] \ I
}

is linearly independent. In particular, for each d-dimensional simplex conv VJ with
|J| = d + 1 the set pos V?

J? ∩Sn−d−2 is a full-dimensional spherical simplex, which is called
the dual simplex of conv VJ. The chamber complex Chamber(P) is the set of subsets
of Sn−d−2 arising from the intersections of all the dual simplices. The following theorem
by Billera, Gel′fand, and Sturmfels [7] (see also [19, Section 5.3]) is essential.

Theorem 4.2. [7, Theorem 3.1] The chamber complex Chamber(P) is anti-isomorphic
to the boundary complex of the secondary polytope SecPoly(P).

The next lemma explains how splits can be recognized in the chamber complex. We
continue to use the notation introduced above: in particular, P is the polytope and G
its spherical Gale dual.

Lemma 4.3. A point x ∈ Sn−d−2 defines a split of P if and only if there exists a unique
circuit C in G such that pos x = pos V?

C+
∩ pos V?

C?−
.

Proof. Consider x ∈ Sn−d−2 such that its chamber is dual to a split S of P. Then
the split hyperplane HS defines a unique cocircuit C of P. Equivalently, C is a circuit
of G. Moreover, pos V?

C+
and pos V?

C?−
correspond to the two maximal cells of S , and

pos x = pos V?
C+
∩ pos V?

C?−
.

Conversely, let C be the unique circuit of G such that pos x = pos V?
C+
∩ pos V?

C?−
for

some x ∈ Sn−d−2. Then x is a ray of the chamber complex, and hence it is dual to a
coarsest subdivision S of P. Since x is the intersection of exactly two dually maximal
cells, the subdivision is a split. �

Example 4.4. Let P be the pentagon and G its Gale dual from Example 4.1. Then
C = (0 + 0−−) is a cocircuit of P corresponding to the split defined by the line through
the vertices v1 and v3. Clearly, C is also a circuit of G, with C+ = {2} and C− = {4, 5}.
We have pos v?2 = pos V?

{2} ∩ pos V?
{4,5}, and C is the unique circuit of G yielding pos v?2 as

the intersection of its positive and its negative cone. The two maximal cells of the split
are the quadrangle conv V{2}? and the triangle conv V{4,5}? ; see Figure 4.1.

With each split S of P we associate the unique circuit C(S ) of G from Lemma 4.3.
If V?

C(S )+
(or V?

C(S )−) consists of a single vertex v of P, we call S the vertex split for the
vertex v and also write C(v) for C(S ). Note that Vert P \ C(v) is exactly the set of all
vertices of P that are connected to v by an edge.

4.2. Totally Splittable Polytopes

We call a polytope totally splittable if all regular triangulations of P are split trian-
gulations. We aim at the following complete characterization.
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Theorem 4.5. A polytope P is totally splittable if and only if it has the same oriented
matroid as a simplex, a cross polytope, a polygon, a prism over a simplex, or a (possibly
multiple) join of these polytopes.

By Proposition 3.42 the set of splits and their (weak) compatibility only depends
on the oriented matroid of P, and hence the notion “totally splittable” also depends on
the oriented matroid only. The join P ∗Q of a d-polytope P and an e-polytope Q is the
joint convex hull of P and Q, seen as subpolytopes in mutually skew affine subspaces
of Rd+e+1. For instance, a 3-simplex is the join of any pair of its disjoint edges. In order
to avoid cumbersome notation in the remainder of this section we do not distinguish
between any two polytopes sharing the same oriented matroid. For instance, “P is a
join of P1 and P2” actually means “P has the same oriented matroid as the join of P1

and P2” and so on.

Example 4.6. We inspect the classes of polytopes occurring in Theorem 4.5.

(a) Simplices are totally splittable in a trivial way.
(b) A triangulation of an n-gon is equivalent to choosing n − 3 diagonals which are

pairwise non-intersecting. This is a compatible system of splits, and hence each
polygon is totally splittable; see Example 2.32. The secondary polytope of an
n-gon is the (n − 3)-dimensional associahedron [39, Chapter 7, Section 3.B].

(c) Let P = conv{±ei | i ∈ [d]} be a regular cross polytope in dimension d. The
splits of P are given by the coordinate hyperplanes xi = 0, for i ∈ [d]. By
combining any d − 1 of these splits one gets a triangulation of P. Conversely,
each triangulation of P arises in this way; see Example 2.33. A Gale dual of P
is given by the multiset G ⊂ Sd−2 consisting of all points

{
ei

∣∣∣ i ∈ [d − 1]
} ∪


1√

d − 1

d−1∑

i=1

ei

 ,

where each point occurs exactly twice. All the rays in the chamber complex
correspond to vertex splits, and the chamber complex is the normal fan of a
(d−1)-simplex (where each vertex carries two labels). So the secondary polytope
of P is a (d − 1)-simplex. See Figure 4.2 (left) below for d = 3.

(d) Let P be the prism over a (d − 1)-simplex. Then the dual graph of any triangu-
lation of P is a path of with d nodes. The secondary polytope of P is the the
(d− 1)-dimensional permutohedron [39, Chapter 7, Section 3.C]. See Figure 4.2
(right) below for d = 3.

Remark 4.7. As the secondary polytope of a join of polytopes is the product of their
secondary polytopes (e.g., this can be inferred from [19, Corollary 4.2.8]), Theorem 4.5
and Example 4.6 show that the secondary polytopes of totally splittable polytopes are
(possibly multiple) products of simplices, permutohedra, and associahedra.

It is obvious that total splittability is a severe restriction among polytopes. The
following result is a key first step.
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Figure 4.2. Gale diagrams of the regular octahedron (left) and of the
prism over a triangle (right).

Proposition 4.8. Let P be a totally splittable polytope. Then each face, each vertex
figure, and each subpolytope Q := conv(V \ {v}) for a vertex v ∈ V is totally splittable.
Moreover, each vertex gives rise to a vertex split, and the neighbors of v span a facet
of Q.

Proof. Each triangulation of P induces a triangulation on each face F of P. A split
of P either does not separate F, or it is a split of F. This implies the total splittability
of the faces.

We can assume that P is not a simplex. Let v ∈ V be a vertex of P. Then there is a
placing triangulation Σ of P such that v comes last [19, Section 4.3.1]. By assumption,
this is a split triangulation, and hence each interior cell of codimension one spans a split
hyperplane. Fix a d-simplex σ ∈ Σ containing v. Then the facet of σ not containing v
is an interior cell of codimension one, and so it spans a split hyperplane H. Since H
cannot cut through the other simplices in Σ and v is the vertex placed last to obtain Σ,
all neighbors of v in the vertex-edge graph are contained in H. This proves that H is the
split hyperplane of the vertex split to v. Moreover, Q = conv(V \{v}) is totally splittable,
and the vertex figure with respect to v is a facet of Q. This completes the proof. �

Remark 4.9. The same argument as in the proof above shows: Each hyperplane
spanned by d affinely independent vertices of a totally splittable polytope defines a facet
or a split.

Note that there exist polytopes for which each vertex defines a vertex split, but which
are not totally splittable. An example is the 3-cube which is simple, and hence each
vertex defines a vertex split Remark 2.14, but which has several triangulations which are
not induced by splits; see Examples 2.19 and 2.34. It is crucial that by Proposition 4.8
the neighbors of a vertex v of a totally splittable polytope span a hyperplane, which we
denote by v⊥. Proposition 4.8 allows to re-read Lemma 4.3 as follows.
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Corollary 4.10. Let v be a vertex of a totally splittable polytope P. Then

v ∈
⋂

w∈Vert P\C(v)

w⊥ .

Remark 4.11. In the situation of Proposition 4.8 all facets of Q are also facets
of P except for the facet F spanning the hyperplane v⊥. Moreover, all vertices of Q
are also vertices of P. In this situation, we say that v is almost beyond the facet F
of P. This is slightly more general than requiring that v is beyond F, which means
that F is the unique facet of P violated by P, and additionally v is not contained in any
hyperplane spanned by a facet of P. If v is beyond F and d = dim P = dim Q ≥ 3, then
the vertex-edge graph of Q is the subgraph of the vertex-edge graph of P induced on
Vert P \ {v} = Vert Q. The vertices in the set Vert P \ C(v) mentioned in Corollary 4.10
then are precisely the neighbors of v in the vertex-edge graph of P. In any case, the
neighbors of v are precisely the vertices on the facet F of Q.

Lemma 4.12. For two polytopes P and Q the join P ∗ Q is totally splittable if and
only if both P and Q are.

Proof. Suppose that P∗Q is totally splittable. Then P and Q both occurs as faces
of P ∗ Q, and the claim follows from Proposition 4.8.

Let dim P = d and dim Q = e, and assume that P and Q both are totally splittable.
The join of a d-simplex and an e-simplex is a (d + e + 1)-simplex, and hence the join
cell-by-cell of a triangulation of P and a triangulation of Q yields a triangulation of P∗Q.
Conversely, each triangulation of P ∗Q arises in this way [19, Theorem 4.2.7]. The join
of a split hyperplane of P with Q and the join of a split hyperplane of Q with P yields
split hyperplanes of P ∗ Q. Now consider any triangulation Σ of P ∗ Q. Then there are
triangulations ΣP and ΣQ of P and Q, respectively, such that Σ = ΣP∗ΣQ. By assumption,
there is a set S P of splits of P inducing ΣP. Likewise S Q is the set of splits inducing ΣQ.
Then the set of joins of all splits from S P with aff Q (as an affine subspace of Rd+e+1) and
the set of joins of all splits from S Q with aff P jointly induce the triangulation Σ. �

Lemma 4.12 together with Example 4.6 completes the proof that all the polytopes
listed in Theorem 4.5 are, in fact, totally splittable. The remainder of this section is
devoted to proving that there are no others.

Proposition 4.13. Let P ⊂ Rd be a totally splittable d-polytope. Then P is a regular
cross polytope if and only if the intersection

⋂
v∈Vert P v⊥ is not empty.

Proof. Clearly, the regular cross polytope P = conv{±ei | i ∈ [d]} has the property
that the intersection of its split hyperplanes is the origin. Conversely, suppose that P is
not a cross polytope. Then there exists a vertex v of P such that at least two vertices u,w
are separated from v by the hyperplane v⊥. By Proposition 4.8, the split hyperplane v⊥

passes through the neighbors of v in the vertex-edge graph of P. Since u is on the
same side of v⊥ as w it follows that v⊥ , w⊥ and, moreover, v⊥ ∩ w⊥ ∩ int P = ∅. Now
suppose that the intersection of all split hyperplanes contains points in the boundary
of P. But since the split hyperplanes do not cut through edges, the intersection must
contain at least one vertex x ∈ Vert P. But this is a contradiction since x < x⊥. By a
similar argument, we can exclude the final possibility that the intersection of all split
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hyperplanes contains any points outside P. Therefore this intersection is empty, as we
wanted to show. �

In a way, cross polytopes (not being quadrangles) are maximally totally splittable.

Lemma 4.14. Let P ⊂ Rd be a d-dimensional regular cross polytope and v ∈ Rd \ P is
almost beyond the facet F of P. If d ≥ 3 then conv(P ∪ {v}) is not totally splittable.

Proof. We can assume that P = conv{±e1,±e2, . . . ,±ed}. Suppose that conv(P∪{v})
is totally splittable. Since we assumed d ≥ 3 each vertex w of P has at least d + 1 neigh-
bors. At least d of these are still neighbors of w in conv(P ∪ {v}), so the hyperplane w⊥

with respect to P is the same as w⊥ with respect to conv(P ∪ {v}). We have that
F⊥ :=

⋂
w∈Vert F w⊥ = {0}, which implies v < F⊥, a contradiction to Corollary 4.10. �

The same conclusion as in Lemma 4.14 holds for prisms over simplices as well. See
also Figure 4.3 and Example 4.16 below.

Lemma 4.15. Let P ⊂ Rd be a prism over a (d − 1)-simplex and v ∈ Rd \ P a point
which is almost beyond a facet F of P. If d ≥ 3 then conv(P∪{v}) is not totally splittable.

Proof. Suppose that conv(P∪{v}) is totally splittable. As in the proof of Lemma 4.14
we are aiming at a contradiction to Corollary 4.10. First suppose that v is beyond F,
and hence for w ∈ Vert P the hyperplanes w⊥ with respect to P and conv(P∪{v}) coincide,
since d ≥ 3; see Remark 4.11.

Up to an affine transformation we can assume that P = conv{e1, e2, . . . , ed, f1, f2, . . . , fd}
with

fk = −
∑

i,k

ei .

The neighbors of the vertex ek are e1, e2, . . . , ek−1, ek+1, . . . , ed and fk; symmetrically for
the fk. A direct computation shows that

e⊥1 ∩ e⊥2 = aff{e3, e4, . . . , ed, c} ,
where c = 1

2d−2 (e1 + e2 + · · · + ed−1 + f1 + f2 + · · · + fd−1)} is the vertex barycenter of the
facet G := conv{e1, e2, . . . , ed−1, f1, f2, . . . , fd−1}, which is a prism.

We have to distinguish two cases: the facet F of P violated by v may be a (d − 1)-
simplex or a prism over a (d−2)-simplex. If F is a simplex, for instance, conv{e1, e2, . . . , ed},
then we can conclude that the set

⋂
w∈Vert v⊥ w⊥ is empty. If, however, F is a prism, for

instance, F = G, we have ⋂

w∈Vert G

w⊥ = {c} .

In both cases we arrive at the desired contradiction to Corollary 4.10.
Now suppose that v violates F but it is not beyond F, that is, v is contained in the

affine hull of some facet F′ of P. Let us assume that d ≥ 4 and that the assertion is
true for d = 3. Then the polytope conv(F′ ∪ {v}) is totally splittable by Proposition 4.8.
Again, F′ may be a (d − 1)-simplex or a prism over a (d − 2)-simplex. If F′ is a (d − 1)-
simplex, it can easily be seen that conv(F′∪{v}) is not totally splittable for d > 3 since F′

does not have any splits. If F′ is a prism over a simplex, we are done by induction.
An easy distinction of the cases, which we omit, allows to prove the result in the

base case d = 3. See Example 4.16 and Figure 4.3 for one of the cases arising. �
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Figure 4.3. Convex hull of prism plus one point almost beyond a quad-
rangular facet, vertex-edge graph (left) and a non-split triangulation
(right).

Example 4.16. Consider the 3-polytope P = conv{e1, e2, e3,−e2−e3,−e1−e3,−e1−e2},
which is a prism over a triangle. For instance, the point v = e1+e2−e3 lies almost beyond
the quadrangular facet F = conv{e1, e2,−e2 − e3,−e1 − e3}. The polytope conv(P ∪ {v})
admits a triangulation which is not a split triangulation; see Figure 4.3.

Proposition 4.17. Let P be a proper totally splittable polytope. Then P is a join
if and only if the vertex set of P admits a partition Vert P = U ∪W such that no vertex
split of a vertex in U is compatible with any vertex split of a vertex in W.

Proof. Let P = (conv U) ∗ (conv W) be a proper join. In particular, P is not a
pyramid, and conv U and conv W both are at least one-dimensional. Then each vertex
in U shares an edge with each vertex in W, and thus the corresponding vertex splits are
not compatible.

Conversely, assume that no split with respect to a vertex in U is compatible with
a split with respect to any vertex in W. Then each vertex in U shares an edge with
each vertex in W. Proposition 4.8 says that each vertex split hyperplane u⊥ contains
all neighbors of u. Thus we infer that

⋂
u∈U u⊥ ⊃ conv W and, symmetrically, we have⋂

w∈W w⊥ ⊃ conv U.
Now there are two cases to distinguish. Either

⋂
v∈Vert P v⊥ is non-empty. Then P is

a regular cross polytope due to Proposition 4.13. But then the vertices of the regular
cross polytope do not admit a partition of the required kind, and so this case does not
occur. The remaining possibility is that

⋂
v∈Vert v⊥ is empty. Since all the vertices in U

are joined to all the vertices in W, the affine subspaces aff U and aff W must be skew.
It follows that P = (conv U) ∗ (conv W). �

For the following we will switch from the primal view on our polytope P to its Gale
dual G. A point of multiplicity two in G is called a double point.
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Lemma 4.18. Let P be a totally splittable polytope which is not a join, and let G be
a spherical Gale diagram of P. Then P is proper, and each point of G is a single point,
or each point is a double point. In particular, there are no points in G with multiplicity
greater than two.

Proof. Since we assume that P is not a join, in particular, it is not a pyramid, and
this is why P is proper. If G had a point with multiplicity three or above this would
yield a contradiction to Lemma 4.3.

So suppose now that v1 is a vertex that has a sibling v2, meaning their duals coincide,
and that the set W of all vertices without a sibling is non-empty. Then, again by
Lemma 4.3, v?1 = v?2 is not contained in pos W?. By the Separation Theorem, there
is an affine hyperplane in Rn−d−1 which weakly separates v?1 = v?2 from pos W?. This
argument even works for all sibling vertices simultaneously. That is H weakly separates
the duals of the sibling vertices from the duals of the non-sibling vertices. By rotating H
slightly, if necessary, we can further assume that H contains at least one dual vertex w?

of a non-sibling vertex w ∈ W. For each such w ∈ W with w? ∈ H the support of the
circuit C(w) is a subset of W∗ and from Lemma 4.3 it follows that the support of C(w)
is contained in the hyperplane H. In the primal view, this means that all vertices v of P
with v? < H have to be in the splitting hyperplane w⊥ and that the vertex split of w
cannot be compatible to any vertex split of a vertex v with v? < H. If now we define
U := {w ∈ Vert P |w? ∈ H} we have a partition of Vert P in U and Vert P \U such that no
vertex split of a vertex in U is compatible with any vertex split of a vertex in Vert P \U.
So P is a join by Lemma 4.17. �

Lemma 4.19. Let P be a totally splittable d-polytope with d ≥ 2 which is not a join,
and let G be a spherical Gale diagram of P.

(a) If each point in G is a double point then P is a regular cross polytope.
(b) If each point in G is antipodal then P is a prism over a simplex.
(c) If each point in G is both a double point and antipodal, then d = 2, and P is a

quadrangle.

A point x ∈ G is antipodal if −x is also in G. Notice that any quadrangle, regular or
not, has a zero-dimensional spherical Gale diagram with exactly two pairs of antipodal
points.

Proof. First note that (c) follows from (a) and (b) since d = 2 is the only case in
which the regular cross polytope is also a prism over a simplex. Suppose that each point
in G is antipodal. Then we claim that the number of vertices of P equals n = 2d. Let
k := n − d − 1 be the dimension of the linear span of G and assume for now that k ≥ 2.
Then we can pick k−1 pairwise distinct points in G which span an affine hyperplane H.
Since G positively spans Rk, there must be at least one point in G on either side of H.
This shows that G ⊂ Sk−1 contains at least k + 1 = n − d pairwise distinct points. Now
suppose that we have at least k + 2 pairs. Take any point v? in G and pick an affine
hyperplane H? orthogonal to v? such that H? does not contain the origin. Since all g ∈ G
are antipodal, for at least k + 1 dual vectors in G the corresponding rays intersect H∗.
Without loss of generality we can assume that these k + 1 dual vectors linearly span Rk.
The k + 1 points of intersection in H? span a (k− 1)-polytope with k + 1 vertices. Such a
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Figure 4.4. Gale diagram of the join of two squares, labeled {1, 2, 3, 4}
and {5, 6, 7, 8}, respectively.

polytope admits two distinct triangulations both of which yield a minimal circuit whose
support contains v?. This contradicts Lemma 4.3.

Now consider the case k = 1. Then, by Lemma 4.18, either n = 2 or n = 4. If n = 2
then d = 0, and this case does not occur. If n = 4 then d = 2, and P is a quadrangle.

For all k ≥ 1 we proved that G consists of precisely k +1 antipodal pairs in Sk−1, that
is n = 2k +2. Up to affine equivalence we can assume that the first k pairs are ±ei. Since
e1, e2, . . . , ek are not positively dependent, one of the two remaining points ±x must be
contained in the non-negative orthant R≥0

k. Assume that x is in the boundary of R≥0
k.

Without loss of generality x (and thus also −x) is contained in the hyperplane x1 = 0.
But then the open halfspaces x1 > 0 and x1 < 0 contain only one point each, namely ±e1.
This is impossible for the Gale dual of a polytope; the argument is the same as above
where we excluded a Gale diagram in S0 consisting of two antipodal points. We conclude
that x is in the strictly positive orthant. It can be shown that P is a prism over a k-
simplex.

Now assume that each point in G is a double point. Let v be any vertex of P and v⊥

the hyperplane corresponding to the vertex split of v. Since v? is a double point in G
there is exactly one vertex w other than v which is not contained in v⊥. The polytope
Q := conv(Vert P \ {v,w}) = P ∩ v⊥ is a face of the vertex figure of v and hence totally
splittable by Proposition 4.8. Clearly, a spherical Gale diagram of Q again has only
double points. Inductively, we can thus assume that Q is a regular cross polytope.
Therefore, its split hyperplanes have a non-empty intersection. Since this intersection
is contained in v⊥ it follows that the split hyperplanes of P also have a non-empty
intersection. Hence P is a regular cross polytope by Proposition 4.13. As a basis of the
induction we can consider the case where G is contained in S1. As G must span R2,
and as each point in G occurs twice, the polytope P has six vertices, and it is three-
dimensional. It can be shown that P is a regular octahedron. �

Now we have all ingredients to prove the main result of this chapter.
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Proof of Theorem 4.5. Let P be a totally splittable d-polytope with spherical
Gale dual G. By Lemma 4.12, we can assume without loss of generality that P is not
a join. Consider a vertex v ∈ Vert P with the property that v? is neither a double nor
an antipodal point. By Proposition 4.8, the polytope Q := conv(Vert P \ {v}) obtained
from P by the deletion of v is again totally splittable. Moreover, dim Q = d since P is
not a pyramid.

Let us assume for the moment that Q is also not a join. Then we can repeat this
procedure until after finitely many steps we arrive at a polytope P′ with a spherical
Gale diagram G′ which consists only of double and antipodal points. In this situation
Lemma 4.18 implies that all points of G′ are double points or all points of G′ are
antipodal. By Lemma 4.19, we can conclude that either d = dim P = dim P′ = 2 and P′

is a quadrangle, or d ≥ 3 and P′ is a regular cross polytope, or d ≥ 3 and P′ is a prism
over a simplex. The question remaining is whether P and P′ can actually be different.
For d ≥ 3 this is ruled out by Lemma 4.14 (if P′ is a cross polytope) and Lemma 4.15
(if P′ is a prism). In the final case dim P = dim Q = dim P′ = 2.

The proof of our main result will be concluded with the subsequent proposition. �

Proposition 4.20. Let P be a totally splittable polytope with spherical Gale dia-
gram G, and let v be a vertex of P with the property that its dual v? in G is neither a
double nor an antipodal point. If P is not a join then Q := conv(Vert P \ {v}) is neither.

Proof. By [7, Lemma 3.4], the Gale transform of Q is the minor G/v? obtained
by contracting v? in G. Up to an affine transformation we can assume that v? is the
first unit vector in Rn−d−1, and so G/v? is the projection of G \ {v?} to the last n − d − 2
coordinates. We call the projection map π. Since v? is neither antipodal nor a double
point, no point in G/v? is a loop, and thus Q is proper, that is, it is not a pyramid.

So suppose that Q = Q1∗Q2 is a join with dim Q1 ≥ 1 and dim Q2 ≥ 1. Then there are
spherical Gale diagrams G1 and G2 of Q1 and Q2, respectively, such that G/v? = G1tG2

as a multiset in Sn−d−3. Up to exchanging the roles of Q1 and Q2, there is a facet F1

of Q1 such that the facet v⊥ opposite to v is a join F1 ∗ Q2. That is to say, the support
of the circuit C(v), corresponding to the vertex split of v in P, is mapped to G1 by π.
In particular, v? is not in the positive hull of the points dual to the vertices of Q2. The
Separation Theorem implies that there is a linear hyperplane H in Rn−d−1 separating v?

from the duals of the vertices of Q2. As in the proof of Lemma 4.18 we can now argue
that P is a join, which contradicts our assumptions. �

This finally completes the proof of the theorem.

Remark 4.21. If v? is antipodal or a double point, then Q is a pyramid over the
unique facet of Q which is not a facet of P. This shows that the assumption on v?

in Proposition 4.20 is necessary. For instance, by inspecting the two Gale diagrams
in Figure 4.2 one can see directly that if P is a regular octahedron or a prism over a
triangle, in both cases Q is a pyramid over a quadrangle.

We are indebted to Raman Sanyal for sharing the following observation with us.
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Corollary 4.22. Each totally splittable polytope is equidecomposable.

A polytope is equidecomposable if each triangulation has the same f -vector.

Proof. This follows from the classification case by case: Each triangulation of an
n-gon has exactly n − 2 triangles. Each triangulation of a d-dimensional regular cross
polytope has exactly 2d − 2 maximal cells. Each triangulation of a prism over a (d − 1)-
simplex has exactly d maximal cells. Observe that equidecomposability is preserved
under taking joins. �

It would be interesting to know if Corollary 4.22 has a direct proof without relying
on Theorem 4.5.



CHAPTER 5

Splits and Tight Spans of Point Configurations

In the previous chapters, we discussed splits and split subdivisions of convex poly-
topes. In this chapter, we will regard a slightly more general situation. Instead of only
looking at convex polytopes, that is to say point configuration in convex position, we
will consider arbitrary point configurations, that is (finite) multisets A ⊂ Rd+1.

The definition of subdivision for a point configuration A is not as obvious as for
polytopes. One the one hand, one could simply take a geometric point of view and
define a subdivision of A as a polytopal decomposition Σ of convA such that all vertices
(i.e., zero-dimensional faces) of Σ are elements of A. We will call such a subdivision a
geometric subdivision of A. On the other hand, this geometric definition does not take
into account the whole structure of the point set (e.g., multiple points in A does not
have any meaning for geometric subdivisions) and does not allow a theory of secondary
polytopes. Therefore, we call a set of sub-point configurations (i.e., sub-multisets)
of A an abstract subdivision ∆ of A if the following three conditions hold (see [19,
Section 2.3]):

(a) If F ∈ ∆ and F̄ is a face of F, then F̄ ∈ ∆,
(b) convA =

⋃
F∈∆ conv F,

(c) If F, F̄ ∈ ∆, then relint(conv F) ∩ relint(conv F̄) = ∅.
As in the case of polytopes, a point configuration F ⊂ A is called a face of A if there
exists a supporting hyperplane H of convA such that F = A∩ H.

If we have an (abstract) subdivision ∆ of a point configuration A, we can look at the
corresponding geometric subdivision Σ(∆) := {conv F | F ∈ ∆}. On the other hand, for a
geometric subdivision Σ of A there generally does not have to exist a unique abstract
subdivision ∆(Σ) with Σ(∆(Σ)) = Σ. However, we can define ∆A(Σ) := {F ∩ A | F ∈ Σ}
as the coarsest possible subdivision with that property. Note that if convA = convA′
we can have geometric subdivisions Σ, Σ′ of A, A′, respectively, with Σ = Σ′ but
∆A(Σ) , ∆A′(Σ).

Most of the results we proved about tight spans and splits of polytopes remain valid
for point configurations. However, in this more general context, we do not only have
to deal with splits but also with 1-splits of point configurations. A 1-split of a point
configuration A is a subdivision of A with exactly one maximal face containing all but
one of the points in A. It will turn out that these one-splits are needed to prove a
generalization of the Split Decomposition Theorem for point configurations.

This chapter is organized as follows. First we will extend the notions of tight span
and coherency of weight functions from polytopes to general point configurations. The
discussion focuses on the differences and specialties compared to the polytope case in
Section 2.2. In Section 5.2, we study which polytopal complexes may occur as the tight
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span of some point configuration or polytope and prove the following two results: Each
tight span of a point configuration also occurs as the tight span of some polytope; and
for each polytope P there exists a tight span (of another polytope) whose sole maximal
cell is P.

The theory of splits and 1-splits for point configurations is developed in Section 5.3
together with a proof of the generalization of the Split Decomposition Theorem. In the
last section we discuss totally splittable point configurations, the analogue of the totally
splittable polytopes of Chapter 4 and give a partial classification result.

5.1. Coherency of Weight Functions

As in Section 2.2, given a point configuration A as an n × (d + 1)-matrix V and a
weight function w : A → R, one can define the envelope of A with respect to w as

Ew(A) :=
{
x ∈ Rd+1

∣∣∣ V x ≥ −w
}

and the tight span Tw(A) ofA as the complex of bounded faces of Ew(A). We again make
the technical assumption that 1 is contained in the column span of V. Furthermore, one
can define the polyhedron Lw(A) and prove a duality theorem similar to Proposition 2.3.
A regular geometric subdivisions Σw(A) of A is obtained by projecting the complex of
bounded faces of Lw(A) to convA. A regular abstract subdivision ∆w(A) ofA is obtained
by taking all sets {p ∈ A | p + w(p)ed+1 ∈ F} for all lower faces F of Lw(A). From this,
one derives that for two lifting function w1,w2 we have that Tw1(A) = Tw2(A) implies
Σw1(A) = Σw2(A) but not necessarily ∆w1(A) = ∆w2(A); see Example 5.1.

It turns out that almost everything we proved in Section 2.2 about coherency is also
true for general point configurations. To be more precise, the statements of Lemma 2.2
up to Corollary 2.8 are true literally if one replaces P and Vert P by A, and this does
not depend on whether one considers geometric or abstract subdivisions. In contrast,
Corollary 2.9 is only true for abstract subdivisions ∆w(A),∆w′(A). However, one has to
be careful at some points. We start out with an example.

Example 5.1. Consider the point configuration H consisting of the vertices of the
hexagon H from Example 2.1 together with the additional point (1, 1, 1), that is, the
columns of the matrix

V ′T =


1 1 1 1 1 1 1
0 1 2 2 1 0 1
0 0 1 2 2 1 1

 ,

and the weight functions w = (0, 0, 1, 1, 0, 0, 0) and w̄ = (0, 0, 1, 1, 0, 0, 1). A direct
computation shows that

Tw(H) = Tw̄(H) = Tw1(H) = [0, (1,−1, 0)] .

The geometric subdivisions Σw(H) and Σw̄(H) agree and are equal to the the split sub-
division Σw1(H). However, the abstract subdivisions ∆w(H) and ∆w̄(H) are not equal:
The former has the maximal faces {1, 2, 3, 5, 7} and {3, 4, 5, 6, 7}, but the latter the max-
imal faces {1, 2, 3, 5} and {3, 4, 5, 6}. (Where the numbers correspond to the rows of the
matrix V ′.) So ∆w̄(H) is strictly finer then ∆w(H). This agrees with the coherency
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indices (defined as in Equation 2.2) αw
w̄ = 0 and αw̄

w = 1 and gives us a counterexample
to Corollary 2.9 for the case of geometric subdivisions.

The decomposition (w, w̄) is coherent and ∆w+w̄(H) = ∆w̄(H), Σw+w̄(H) = Σw̄(H) in
accordance with Corollary 2.4.

If one looks carefully at the proofs in Section 2.2, one sees that the proofs of
Lemma 2.2, Proposition 2.3, and Proposition 2.7 also work for point configurations
(if one replaces P and Vert P by A). A bit more care is needed for Corollary 2.4. At
first sight, the statement seams to work only for geometric subdivisions (with the same
proof) since coherency is defined in terms of the tight span which does not distinguish
between different abstract subdivisions which define the same geometric subdivisions.
However, if we define Fw(x) simply as {v ∈ A | 〈v, x〉 = −w} in the proof of Corollary 2.4,
the proof works well. The key point is that this definition does not only take into ac-
count the tight span Tw(A) or the envelope Ew(A), but the vertex-inequality incidence
structure of Ew(A). Indeed, together with its vertex-inequality incidence matrix, the
tight span can distinguish between different abstract subdivisions.

Although Corollary 2.4 is true for geometric and abstract subdivisions in the version
we stated it, the slightly stronger statement, Corollary 5.2 below, which was implicitly
used in the proof of Corollary 2.9, does only hold for abstract subdivisions.

Corollary 5.2 (Strengthening of Corollary 2.4). A decomposition w = w1 + w2 of
weight functions of A is coherent if and only if the subdivisions ∆w1(A) and ∆w2(A) have
a common refinement.

Corollary 5.2 directly follows from the secondary fan theory we also discussed in
Section 2.2. This theory works fine for abstract subdivisions, but not for geometric
subdivisions; see [19, Chapter 5].

Example 5.3. We consider the point configuration A whose elements are the
columns of the matrix

VT =


1 1 1 1 1
0 2 0 2 1
0 0 2 2 1



consisting of the vertices of a square together with its center (see Figure 5.1) and
the weight function w1 = (1, 0, 0, 0, 0),w2 = (0, 1, 0, 0, 0), w̄1 = (1, 0, 0, 0, 1), and w̄2 =

(0, 1, 0, 0, 1). A computation of the tight spans gives

Tw1(A) = Tw̄1(A) = [0, (−1, 1/2, 1/2)] , and Tw2(A) = Tw̄2(A) = [0, (0,−1/2,−1/2)] .

As in Example 5.1, we have that Σwi(A) = Σw̄i(A), but ∆wi(A) , ∆w̄i(A) for i = 1, 2.
Hence the geometric subdivisions Σw̄1(A) and Σw̄2(A) have a common refinement, the
subdivision depicted in Figure 5.1 on the right, just as Σw1(A) and Σw2(A) . The corre-
sponding abstract subdivision is also the common refinement of ∆w1(A) and ∆w2(A); but
∆w̄1(A) and ∆w̄2(A) does not have a common refinement. This agrees with the fact that
(w1,w2) is coherent whereas (w̄1, w̄2) is not and verifies our strengthening of Corollary 2.4
in this case of abstract subdivisions (and falsifies it for geometric subdivisions).
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1
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4

5

Figure 5.1. The point configuration of Example 5.3.

Remark 5.4. In Remark 2.6, we mentioned the special case of the second hypersim-
plex ∆(2, n). One can also consider the point configuration A consisting of the vertices
of ∆(2, n) together with the n additional points 2ei. The convex hull A is a (d − 1)-
dimensional simplex. Lifting functions w : A → R≥0 where w(2ei) = 0 for all i, does not
correspond to metrics, but to distance functions which does not necessarily fulfill the
triangle inequality. These were studied by Hirai [50, Section 4].

A further special case we mentioned in Remark 2.6 is the Delone decomposition. This
is particular interesting also for point configurations, and everything we mentioned in
that remark is also true in this generality. In this case, one is usually interested in the
geometric and not in the abstract subdivision.

5.2. Tight Spans of Point Configurations and Polytopes

When considering tight spans, one might wonder which polytopal complexes might
arise as the tight span of some regular subdivision of a polytope (or a point configura-
tion). In this section, we will give a partial answer to this question: If the tight span is
a single polytope, it can be any polytope. It turns out that the generalization of tight
spans to point configuration in this chapter is very useful, even if we intrinsically only
want to talk about tight spans of polytopes.

To this end, we will first relate tight spans of polytopes and tight spans of point
configurations.

Proposition 5.5. Let A ⊂ Rd+1 be a point configuration and Σw(A) a regular sub-
division of A. Then there exists a polytope P ⊂ Rd+2 together with a regular subdivi-
sion Σw′(P) of P such that Tw′(P) is affinely isomorphic to Tw(A).

Proof. We can assume without loss of generality thatA does not have any multiple
points and that for all cells C ∈ Σw(A) we have Vert(C) = C∩A. Furthermore, we assume
that w < 0. Then we define the polytope P ⊂ Rd+2 = Rd+1 × R as

P = conv {(a,±w(a)) | a ∈ A} .
From our assumption that every p ∈ A is the vertex of some F ∈ Σw(A), it follows that
all the lifted points (a,w(a)) are vertices of Lw(A); and so from w < 0 it follows that
all points (a,±w(a)) are vertices of P. We define our weight function w′ : Vert P→ R as
w′(a,±w(a)) = w(a). From the definition of the envelope, we directly get that x ∈ Ew(A)
implies (x, 0) ∈ Ew′(P) and that (x, x′) ∈ Ew′(P) implies x ∈ Ew(A). We will now show
that Tw′(P) = Tw(A) × {0}, which yields the theorem.
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Stated otherwise, we have to show that (v, v′) ∈ Rd+1 × R is a vertex of Ew′(P) if and
only if v′ = 0 and v is a vertex of Ew(A). So let first v be a vertex of Ew(A). Then there
exists a (d + 1)-element set B ⊂ A such that v is the unique solution x of the linear
system 〈a, x〉 = −w(a) for all a ∈ B. This implies that (v, 0) is the unique solution (x, x′)
to the system 〈a, x〉 ± w(a)x′ = −w(a) for all a ∈ B, and so (v, 0) is a vertex of Ew′(P).

On the other hand, consider a vertex (v, v′) ∈ Rd+1 × (R \ {0}) of

Ew′(P) =
{
(x, x′) ∈ Rd+1 × R

∣∣∣ 〈a, x〉 ± w(a) ≥ w(a)x′ for all a ∈ A
}
.

Suppose that there exists some p, q ∈ A with

〈p, v〉 + w(p)v′ = −w(p) and(5.1)

〈q, v〉 − w(q)v′ = −w(q) .(5.2)

Since v ∈ Ew(A) we have 〈p, v〉 ≥ −w(p) and 〈q, v〉 ≥ −w(q). Furthermore, by our
assumption, we have w(p),w(q) < 0. So Equation (5.1) yields v′ ≥ 0, and Equation (5.2)
yields v′ ≤ 0, a contradiction. So we can assume that we only have equality in “+”-
inequalities. Hence, we find a (d + 2)-element set B ⊂ A such that (v, v′) is the unique
solution (x, x′) of the linear system 〈a, x〉 + w(a)x′ = −w(a) for all a ∈ B. However, a
solution to this system is (0,−1) which is not an element of Ew′(P) (since it does not
fulfill any of the “−”-inequalities). This contradiction finishes the proof. �

Remark 5.6. One can show that

Ew′(P) =

{
(x, x′) ∈ Rd+1 × R

∣∣∣∣∣ x ∈ Ew(A) and |x′| ≤ −max
a∈A
〈a, x〉
w(a)

− 1
}
.

By Proposition 5.5, we get that the generalization to point configurations does not
yield new tight spans, all possible tight spans still occur as tight spans of polytopes.
However, for a point configuration we do not generally find a polytope with the same
secondary polytope (or set of subdivisions), so if one is interested in the global structure,
point configurations still have to be considered.

Furthermore, Proposition 5.5 gives us the possibility to give examples of d-dimensional
point configurations with tight spans that equal tight spans of (d + 1)-dimensional poly-
topes. This will be used in Chapter 6. Note however, that if we have a tight span of a
triangulation of a point configuration, the tight span of the polytope constructed in the
proof of Proposition 5.5 does not again belong to a triangulation. On the other hand,
we will see in Section 6.1 that a similar statement is true for coarsest subdivisions.

Now we can prove the main result of this chapter.

Theorem 5.7. Let P be any polytope. Then there exists a polytope P′ and a lifting
function w for P′ such that Tw(P′) is affinely isomorphic to P.

For the proof we need some notions about polytope polarity (very similar to cone
polarity we used in the proof of Proposition 2.3). We only give the notions and results
we use here and refer the reader to [97, Section 2.3] or [42, Section 3.4] for details.

For a set A ⊂ Rd the polar set A◦ is defined as

A◦ =
{
y ∈ Rd

∣∣∣ 〈x, y〉 ≤ 1
}
.
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If A is a compact convex set (e.g., a polytope) with 0 ∈ int A then (A◦)◦ = A. For a
polytope P with 0 ∈ int A (Note that this implies that P is d-dimensional.), the polar P◦

equals (Vert P)◦ and is also a d-dimensional polytope with 0 ∈ int P◦, called the polar (or
dual) of P; and the face lattices of P and P◦ are anti-isomorphic.

Proof of Theorem 5.7. By Proposition 5.5, it suffices to find a point configura-
tion A and a lifting function w : A → R such that Tw(A) � P. We assume that P ⊂ Rd

is d-dimensional and that 0 ∈ int P, and we denote by v1, . . . , vn the vertices of P◦ ⊂ Rd.
Define the point configuration A ⊂ Rd+1 as A = {(−1,−v1), . . . , (−1,−vn), (−1, 0)}, and

the lifting function w : A → R by w(−1,−vi) = 1 for all i = 1, . . . , n, and w(−1, 0) = 0.
(Since O := (−1, 0) is in the interior of conv{(−1,−vi)} � P◦ the subdivision Σw(A) is
obtained by coning from O.) We get that

Ew(A) =

x ∈ Rd+1

∣∣∣∣∣∣∣∣


−1 −v1
...
...

−1 −vn
−1 0

 x ≥ −


1
...
1
0




=

{
(x1, x′) ∈ R≤0 × Rd

∣∣∣ x1 + 〈vi, x′〉 ≤ 1 for all i ∈ [n]
}

= R≤0 × (P◦)◦ .

This implies that Tw(A) = {0} × (P◦)◦ = {0} × P and hence the theorem. �

5.3. Splits and the Split Decomposition Theorem

In Section 2.3, we defined a split to be a decomposition of a polytope with exactly
two maximal cells. This definition works equally well for geometric subdivision of point
configurations, but for abstract subdivisions we have to be more careful.

Example 5.8. Consider the point configurationA from Example 5.3; see Figure 5.1.
Should the subdivisions with the maximal cells {1, 2, 3, 5} and {1, 3, 4, 5} and that with
maximal cells {1, 2, 3} and {1, 3, 4} both be considered as splits?

Our Remark 2.13 and the more detailed discussion on splits of oriented matroids in
Section 3.5 give the answer to this question and yield the following definition of split
for a point configuration A: If the cocircuit C of the oriented matroid M(A) of A is
a split of M(A), then S + = {p ∈ A |Cp ∈ {0,+}} and S − = {p ∈ A |Cp ∈ {0,−}} are the
maximal cells of a split S of A. Equivalently, splits of A can be defined as follows.

Lemma 5.9. Let S be an (abstract) subdivision of A with exactly two maximal
faces S + and S −. Then the following statements are equivalent.

(a) S is a split of A,
(b) S is a coarsest subdivision of A,
(c) we have S + = conv S + ∩A and S − = conv S − ∩A.

After the definition of split for polytopes in Section 2.3, we remarked that for a
split S there exists a hyperplane HS that defines S and that a hyperplane H (that
meets the relative interior of the polytope) defines a split if and only if it does not meet
any edge of P in its relative interior. As well, for a split S of a point configuration A
there exists as well a hyperplane H inducing a split. However, the condition has to be
modified a bit: A hyperplane H defines a split of A if and only if it meets convA in its
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interior and for all edges E of convA we have that H ∩ E is either empty, a point of A,
or E itself. We give a complete generalization of Observation 2.12 and Proposition 3.1 to
point configurations. One can give similar generalizations of the results of Section 3.1,
for example for the conditions of compatibility, and so on.

Proposition 5.10. Let A be a point configuration and H a hyperplane that does
not intersect convA in the interior. Then the following are equivalent.

(a) H induces a split on A,
(b) H meets all edges E of A in an element of A, E, or ∅,
(c) H meets all faces of A in a face of A or induces a split on them,
(d) H meets all facets of A in a face of A or induces a split on them,
(e) all vertices of the subdivision of A with maximal faces A∩ H+ and A∩ H− are

elements of A,
(f) H ∩ convA = conv(A∩ H).

Again, H+ and H− denote the two halfspaces in which Rd+1 is divided by the hyper-
plane H.

An immediate consequence of this characterization is the following lemma which
states that by adding point into the convex hull one cannot loose splits.

Lemma 5.11. Let A be a point configuration and A′ ⊂ A with convA = convA′.
If S is a split of A′ with maximal faces S + and S −, then A has a split S ′ with maximal
faces S ′+ = conv S + ∩A and S ′− = conv S − ∩A.

Especially, if S is a split of convA with maximal faces S + and S −, then A has a
split S ′ with maximal faces S ′+ = S + ∩A and S ′− = S − ∩A.

Remark 5.12. It follows from Lemma 5.11 that a two-dimensional point configu-
ration A with convA not being a simplex cannot be unsplittable. But in contrast to
the polytope case, there are a lot of different point configuration whose convex hulls are
simplices. In fact, such a point configuration A is unsplittable if and only if there is
no p ∈ A which is in the relative interior of an edge of convA. This gives us a lot of
non-trivial unsplittable two-dimensional point configurations, namely all those having
a point in the relative interior but no point in the relative interior of an edge. So the
simplest non-trivial unsplittable point configuration is a triangle with a point in its
interior.

If one considers abstract subdivisions of A, it does not have to be the case any
more that the splits are the “simplest” possible non-trivial subdivisions. For example,
in the point configuration of Example 5.3 (see Figure 5.1), the subdivision with the sole
maximal cell {1, 2, 3, 4} is non-trivial. In general, for any p ∈ conv(A \ p) there exists a
subdivision S p of A with the unique maximal face A\{p}. (This includes configurations
in convex position where one of the points occurs several times.) Such subdivisions will
be called 1-splits (or 1-subdivisions); see Chapter 6 for this nomenclature. Otherwise
stated, a 1-split of A is a subdivision with exactly one maximal face F such that
|F| = |A| − 1.

Remark 5.13. By the definition of split of a point configuration, it is clear that the
set of splits of a point configuration A only depends on the oriented matroid of A as for
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polytopes, see Remark 2.13. By the last sentence before this remark, this is also clear
for 1-splits.

Lemma 5.14. Splits and 1-splits of point configurations are regular.

Proof. For a split S of a point configuration A, we have the splitting hyperplane
HS = lin(S + ∩ S −). As in the proof of Lemma 2.16, we can now define a lifting function
wS : A → R by Equation (2.5).

For a 1-split this is even more simple, we define a lifting function wp by wp(p) = 1
and wp(x) = 0 for x , p to get S p. �

So we get two kinds of facets of the secondary polytope. By specializing Inequal-
ity (2.4) for the 1-split S p of A ⊂ Rd+1, we get that this facet is simply given by

xp ≥ 0 .(5.3)

For a split S , we get
∑

y∈S +

|〈a, p〉| xp ≥ |〈a, cconv S +
〉| (d + 1) vol(conv S +)(5.4)

as facet defining inequality, where a is a normal vector of HS and cconv S +
is the centroid

of conv S +, as in (2.6).
As in the case of a polytope, we can define the split polyhedron SplitPoly(A) of a

point configuration A. It is the (|A| − d − 1)-dimensional polyhedron in R|A| defined
by the Inequalities (5.4) for the splits, the Inequalities (5.3) for the 1-splits, and the
Equations (2.3). Again, the split polyhedron only depends on the oriented matroid of A
and is bounded if convA is a simple polytope.

Whereas the tight span of a split is a line segment, the tight span of a 1-split only
consists of the single point O = (0, . . . , 0). This implies that for the 1-split S p the
coherency index of any lifting function w with respect to wp can be computed by the
much simpler formula

αw
wp

= min
x∈Vert Ew(A)

〈p, x〉 + w(p) .(5.5)

In fact, this means that for each maximal cell C of ∆w(A) we test if p ∈ C. To formulate a
split decomposition theorem for point configurations we call a lifting function w : A → R
split prime if αw

wS
= 0 for all splits S and αw

wp
= 0 for all 1-splits S p. So we get the

following generalization of Theorem 2.21.

Theorem 5.15 (Split Decomposition Theorem for Point Configurations). Each
weight function w has a coherent decomposition

(5.6) w = w0 +
∑

S p a 1-split of A
λpwp +

∑

S split of A
λS wS ,

where w0 is split prime, and this is unique among all coherent decompositions of w.

Proof. The proof works in the same manner as the proof of Theorem 2.21. The
splits are obtained by testing all faces F of ∆w(A) where aff F has codimension 1, and
the 1-splits are all the S p where p is not contained in any face of ∆w(A). �
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If we define S(w) := {ws |αw
wS

> 0} ∪ {wp |αw
wp

> 0}, we can derive Corollary 2.22
literally for point configurations. Furthermore, Lemma 2.23 also holds, where S can be
a set of splits and 1-splits for A.

5.4. Totally Splittable Point Configurations

As in the case of polytopes, a point configuration A is called totally splittable if its
secondary polytope equals its split polytope. Equivalently, A is totally splittable if all
its (regular) subdivision are refinements of splits and 1-splits.

Before examining the general case we consider the special case of one-dimensional
point configurations.

Proposition 5.16. Let A be one-dimensional point configuration. Then the follow-
ing holds.

(a) A is totally splittable.
(b) Splits of A are in bijection with A ∩ relint(convA) where multiple points are

counted only once.
(c) 1-splits of A are in bijection with A where multiple points are counted with

their multiplicity, but the two endpoints of convA are only counted if they are
not single points.

Proof. (a) It is obvious that coarsest subdivisions of one-dimensional point
configurations can only have one or two maximal cells. If we have a subdivision
∆ with the only maximal cell A \ X, then ∆ is the common refinement of the
1-splits S p for all p ∈ X. If ∆ has two maximal cells, then ∆ is the refinement
of the split ∆A(Σ(∆)) and some 1-splits.

(b) Clear from the fact that the only possible splitting hyperplanes for a one-
dimensional point configuration are spanned by points in the interior of convA.

(c) A point p ∈ A can be deleted from A to get the 1-split A if and only if it is
not a vertex that is not a multiple point.

�

In the case were A does not have any multiple points, the secondary polytope
of A is combinatorially equivalent to a (|A| − 2)-dimensional cube; see [39, Chapter 7,
Section 3.A].

Remark 5.17. Let A be a point configuration and p ∈ A. We consider the point
configuration A′ := A ∪ { p̄}, where p̄ is a copy of p, that is to say we add the point p
one more time to the multiset A. We distinguish two cases. If p is a vertex of convA,
then A′ has exactly two more coarsest subdivisions: the 1-splits S p and S p̄. If p is
not a vertex of convA, then A′ has exactly one more coarsest subdivision, the 1-split
S p̄. In any case, A′ is totally splittable if and only if A is totally splittable. So we
do not have to worry about multiple points when examining if a point configuration is
totally splittable. Therefore, from now on, we only consider the case where A is just
an (ordinary) set.

To discuss arbitrary dimensions, we give generalizations of Proposition 4.8 and Lem-
ma 4.12 to point configurations.
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Proposition 5.18. Let A be a totally splittable point configuration. Then each face
of A, each vertex figure, and each subconfiguration A \ {v} for a vertex v of convA is
totally splittable. Moreover, each vertex gives rise to a vertex split.

Similar as for polytopes, the join A ∗ B of a d-dimensional point configuration A
and an e-dimensional point configuration B is defined as the union of A and B where
A and B are embedded in mutually skew affine subspaces of Rd+e+1.

Lemma 5.19. For two point configurations A and B the join A∗B is totally splittable
if and only if both A and B are.

The proof of these two statements works similar to the proof of Proposition 4.8 and
Lemma 4.12 in Chapter 4. However, in the proof of Lemma 5.19 one has to consider
splits and 1-splits instead of splits only.

Proposition 5.18 says that after removing vertices of convA from a totally splittable
point configuration A the new configuration remains totally splittable. This can be
generalized to the removal of arbitrary elements p ∈ A.

Proposition 5.20. Let A be a totally splittable point configuration and A′ ⊂ A.
Then A′ is totally splittable. Especially, if A is a totally splittable point configuration
then convA is a totally splittable polytope.

Proof. Let us first consider the case that convA′ ( convA. Then it follows by
induction from Proposition 5.18 thatA∩convA′ is totally splittable. So we can suppose
that convA = convA′.

Let ∆′ be a subdivision of A′ that is not a refinement of splits. Then ∆ := ∆A(Σ(∆′))
is a subdivision of A and, by assumption, a refinement of splits and 1-splits. However,
for any such split S of A, S ′ := ∆A′(Σ(S )) has to be a split of A′ since Σ(S ) is a
coarsening of Σ(∆) = Σ(∆′). So ∆′ is the refinement of all such S ′ and possibly some
1-splits of A′. �

Figure 5.2. A totally splittable and two non-totally splittable point configurations.

Example 5.21. (a) Let P be a regular 2n-gon with center O. Then A :=
Vert P ∪ {O} is easily seen to be totally splittable; see Figure 5.2 (left).

(b) Let P be a regular 2n-gon with center O and p , O any point in the interior of
P, or let P be a regular 2n + 1-gon and p any point in the interior of P. Then
A := Vert P ∪ {p} is not totally splittable; see Figure 5.2 (right).

(c) The point configuration A consisting of the 2d vertices of the d-dimensional
regular cross polytope Xd and the origin O is totally splittable. The d splits
of the cross polytope (cf. Example 2.33) are split of A and there exists one
1-split S O. Each d of these d + 1 splits and 1-splits can be combined and hence
we get that SecPoly(A) = SplitPoly(A) is a d-dimensional simplex.
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In fact, the point configurations from Example 5.21 and Proposition 5.16 are the
only totally splittable point configurations with points in the interior.

Theorem 5.22. Let A be a point configuration of dimension at least two. If A is
totally splittable, then convA has the same oriented matroid as a simplex, a cross poly-
tope, a polygon, a prism over a simplex, or a (possibly multiple) join of these polytopes,
and either

(a) A∩ relint(convA) = ∅,
(b) A ∩ relint(convA) = {p} and convA is a 2n-gon whose main diagonals meet

in p, or
(c) A ∩ relint(convA) = {p} and convA has the same oriented matroid as a cross

polytope with p as center.

Moreover, if A does not have any additional point in the boundary, then the converse
also holds.

The main diagonals of a 2n-gon are the diagonals connecting vertices with (edge
graph) distance n.

Proof. By Theorem 4.5 together with Proposition 5.20, it follows that for a totally
splittable point configuration A the polytope convA has the same oriented matroid as
a simplex, a cross polytope, a polygon, a prism over a simplex, or a (possibly multiple)
join of these polytopes. By Example 5.21, Remark 5.17, and Proposition 5.20 together
with Theorem 4.5, it follows also that if this is the case, one of the properties (a)
to (c) is fulfilled and A does not have any additional point in the boundary, the point
configuration A is totally splittable. It remains to show that one of the properties (a)
to (c) is necessary.

Consider a totally splittable point configurationA and a point p ∈ A∩relint(convA).
By coning from p, we obtain a subdivision ∆ = {F, F ∪{p} | F , A a face of A} of A. By
assumption, ∆ has to be a refinement of splits. Now we have five different cases:

. convA is a simplex. It is easily seen that in this case A cannot have any splits
(since A is not one-dimensional). So ∆ cannot be a split subdivision.

. convA is an n-gon. That ∆ is a split subdivision implies that for any vertex
v1 of convA the there has to lie a unique other vertex v2 of convA on the
line spanned by v1 and p. It follows that n has to be even and that the main
diagonals of convA has to meet in p. This is case (b); see Figure 5.2.

. convA is a cross polytope. That ∆ is a split subdivision implies that the line
segments connecting p and any vertex v of convA has to lie in a split hyperplane
of convA. This implies, that p is the center of convA and we are in case (c).

. convA is a prism over a (d − 1)-dimensional simplex. We can assume that
d ≥ 3, otherwise we are in the polygon case. The maximal faces of ∆ are two
d-dimensional simplices and d pyramids over a prism over a (d− 2)-dimensional
simplex. However, this implies the existence of codimension-one-faces F ∈ ∆

that comprises edges from one of the boundary simplices of convA to the other.
So any hyperplane that contains F has to define a split of the boundary sim-
plices, which is not possible. So there cannot be any points in the interior
of convA.
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. convA is a join. We assume that convA = P1 ∗ P2. There exists codimension-
two-faces of convA that are of the form F1∗F2, where F1, F2 are facets of P1, P2,
respectively. So there exists a codimension-one-face F of ∆ with conv F =

conv
(
F1 ∗ (F2 ∪ {p})). Since ∆ is a split subdivision, there exists a split S

of convA such that F ⊂ HS . However, such a split cannot exists, since all
splitting hyperplanes of the join P1 ∗ P2 are of the form lin(P1 ∗ (HS 2 ∩ P2)) or
lin((HS 1 ∩ P1) ∗ P2), where S 1, S 2 are splits of S 1, S 2, respectively. This shows
that there cannot be any points in the interior of convA.

�



CHAPTER 6

Additional Facets of the Secondary Polytope

In Chapter 2, we studied the splits of a polytope P which are the subdivisions of P
with two maximal cells. The natural next step is now the study of other classes of
coarsest subdivisions of P. This chapter should be seen as a starting point to such an
investigation.

We will begin with studying the tight spans of general coarsest subdivisions of a
point configuration with a small number of maximal faces. In Section 6.2, we will
consider a special class of coarsest subdivisions with k maximal cells, the k-splits, which
share at least some of the properties of splits. In particular, we will prove that k-splits
are regular subdivision and hence facets of the secondary polytope of P. We conclude
with some open questions.

6.1. k-Subdivisions

Instead of considering only polytopes we will use the more general context of point
configurations as discussed in Chapter 5. The main reason for this is, that this allows
to give lower-dimensional examples. For a point configuration A we call an (abstract)
subdivision ∆ ofA a k-subdivision if it has k maximal faces and cannot be coarsened non-
trivially. So splits are exactly the 2-subdivisions and the notion of 1-subdivisions (which
can only occur for non-convex point configurations) agrees with those of Section 5.3. By
this definition, the set of all regular k-subdivisions (for all k ≥ 1) corresponds exactly to
the set of facets of the secondary polytope of A.

For 1-subdivisions and 2-subdivisions we know exactly how the tight spans look like:
they are points and line segments, respectively. However, for k-subdivisions with k ≥ 3
the tight spans get much more complicated. We will investigate this in this section.
First, we give two general statements about the tight spans of k-subdivisions.

Remark 6.1. (a) As we defined k-subdivisions so far, they are abstract subdivi-
sions. However, we will also call the geometric subdivision Σ(∆) a k-subdivision
if ∆ is a k-subdivision. But note that there might be another abstract subdi-
vision ∆′ that is not a k-subdivision with Σ(∆′) = Σ(∆). Since we are mainly
interested in the tight spans of the subdivisions in this section, we will normally
work with a geometric subdivisions Σ, but the results are true as well for ∆A(Σ).

(b) So far, we only defined the tight span for regular subdivisions. However, for any
subdivision Σ of a point configuration A one can define the tight span TΣ(A) as
the abstract polyhedral complex that is dual to the complex of inner faces of Σ.
For regular subdivisions, the usual tight span is a realization of this abstract
polyhedral complex by Proposition 2.3. All we proof in this section about tight
spans makes perfect sense also for non-regular subdivisions.

85
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Proposition 6.2. Let A be a point configuration and Σ a k-subdivision of A
with k > 3. Then the tight span TΣ(A) is not a k-gon.

Proof. Suppose we have some subdivision Σ of A whose tight span is a k-gon.
The k-gon corresponds to some codimension-two-face F of Σ. The facets of F are all
contained in the boundary of convA since any facet of F that is an inner face would
correspond to a three-dimensional face of TΣ(A). So we have F = aff F ∩A. The edges
of the k-gon are dual to codimension-one-faces of Σ whose intersection is F. We label
these faces F1, . . . , Fk (We consider the indices modulo k.), where F1 is chosen arbitrary
and the others are numbered in anti-clockwise order. Furthermore, the maximal cell
of Σ between Fi and Fi+1 is called Ci. For each cell Ci we can now measure the angle αi

between the two consecutive faces Fi and Fi+1. Obviously,
∑k

i=1 αi = 2π, and since k > 3
there has to exist at least one i with αi + αi+1 ≤ π.

We now distinguish two cases. If αi + αi+1 = π the hyperplane lin Fi = lin Fi+2

defines a split of A, contradicting the fact that Σ was supposed to be a coarsest sub-
division. On the other hand, αi + αi+1 < π implies that conv Ci ∪ conv Ci+1 is convex.
Therefore we can construct a new subdivision Σ′ of A with the k − 1 maximal faces
C1, . . . ,Ci−1,Ci ∪ Ci+1,Ci+2, . . . ,Ck. Since αi + αi+1 < π, the faces Fi, Fi+2 ∈ Σ are also
faces of Σ′, what ensures that the intersection property holds and hence Σ′ is a valid
subdivision of A. �

Note that this only shows that k-gons with k > 3 cannot be the sole maximal cell of
a tight span of a k-subdivision. It can well be that a polygon occurs as a maximal cell
of a tight span of a k-subdivision if there are other maximal cells. For the most simple
example see Figure 6.2 in the top right.

For the next condition we call a polyhedral complex 2-connected if it is still connected
if one removes any vertex (i.e., the graph of the complex is 2-connected in the usual
sense).

Proposition 6.3. Let A be a point configuration and Σ a k-subdivision of A. Then
the tight span TΣ(A) is 2-connected.

Proof. We will show that for a subdivision Σ ofA whose tight span is not 2–connec-
ted there exists a subdivision Σ′ of A that coarsens Σ.

Let v be a vertex of TΣ(A) such that TΣ(A) \ {v} is not connected and T the set
of vertices of some connected component of TΣ(A) \ {v}. For a vertex w of TΣ(A) the
corresponding maximal cell of Σ is denoted by w◦ . We then define the new subdivision Σ′

of A by deleting all maximal cells w◦ with w ∈ T ∪ {v} and adding C :=
⋃

w∈T∪{v} w◦ as
a maximal cell. In order that Σ′ is actually a subdivision of A, we have to show two
things: First that F is convex, and second that there is no improper intersection of some
face of F and some remaining face of Σ.

To prove the first assertion, assume that there exists x, y ∈ relint C such that the line
segment l connecting x and y is not entirely contained in C. Then l has to intersect two
codimension-one-cells C1 and C2 of those remaining in Σ. However, by our assumption
that T is the set of vertices of some connected component of TΣ(A) \ {v} those cells has
to be facets of v◦. This implies that v◦ is not convex, a contradiction.
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For the second assertion note that such an improper intersection cannot happen in
the interior of convA since all interior faces of C are interior faces of v◦ by assumption.
However, any improper intersection of faces F1, F2 in the boundary of convA would
yield an improper intersection of some interior faces F′1, F

′
2 with F1 ⊂ F′1, F2 ⊂ F′2. So Σ′

is a subdivision of A that coarsens Σ, as desired. �

As a third condition for the tight span of a k-subdivision, we recall that any tight
span of a regular subdivision has to be a contractible and hence simply connected
polyhedral complex; see Section 2.2. It can be shown that this is true also for non-
regular subdivisions. Additionally, this lead to the following important corollary.

Corollary 6.4. Let A be a point configuration, k ≥ 3 and Σ a k-subdivision of A.
Then all maximal faces of the polyhedral complex TΣ(A) are at least two-dimensional.

Proof. Suppose there exists some edge E in TΣ(A) connecting v and w that is a
maximal face. Since Σ is not a split, one of the vertices of E is strictly contained in
another face of TΣ(A). If we delete this vertex from TΣ(A), by Proposition 6.3, the
remainder is still connected. However, this implies that there has to be a path in the
graph of TΣ(A) connecting v with w without using E. This contradicts the simple
connectedness. �

Before examining some concrete tight spans of k-subdivisions we give a strengthening
of Proposition 5.5 that allows us to give examples of k-subdivisions of point configura-
tions and have in examples for k-subdivisions of polytopes.

Proposition 6.5. Let A ⊂ Rd+1 be a point configuration and Σw(A) a regular k–sub-
division of A. Then there exists a polytope P ⊂ Rd+2 and a regular k-subdivision Σw′(P)
of P such that Tw′(P) is affinely isomorphic to Tw(A).

Proof. We use the same construction as in the proof of Proposition 5.5. What
remains to show is that the subdivision Σw′(P) cannot be refined non-trivially. Suppose
there exists some non-trivial coarsening Σ of Σw′(P). It is easily checked that Σ′ :=
{C ∩ (Rd+1 × {0}) |C ∈ Σ} is a subdivision of A × {0}, so we have a subdivision of A
that coarsens Σw(A) non-trivially. This contradicts the assumption that Σw(A) was a
k-subdivision. �

No we will examine the tight spans of k-subdivision for small k.

Lemma 6.6. Let A be a point configuration, and Σ a 3-subdivision of A. Then the
tight span of Σ is a triangle.

Proof. Obviously, the only simple connected polyhedral complexes with three
points are a triangle or two line segments connected at one point. However, the latter
cannot occur by Proposition 6.4. �

Example 6.7. Let P the bipyramid over a triangle. It is easily seen, that P has
two coarsest subdivision which are both also triangulations: First the split subdivision
obtained by the only split which yield two congruent tetrahedra, second the subdivision
obtained by taking the diagonal between the two non-adjacent vertices and forming
three tetrahedra around it. The latter is a 3-subdivisions whose tight span is a triangle.
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Lemma 6.8. Let A be a point configuration, and Σ a 4-subdivision of A. Then the
tight span of Σ is either a tetrahedron, consists of three triangles with a common vertex,
or consists of two triangles glued together at one edge.

Proof. We are searching for simply connected polyhedral complexes with four ver-
tices. By Corollary 6.4, we have the additional condition that all maximal cells has to
be at least two-dimensional. So the candidates are a tetrahedron, two triangles glued
together at one edge, three triangles with a common vertex or a quadrangle. However,
the quadrangle cannot occur by Proposition 6.2. �

Example 6.9. In Figure 6.1, we depict examples of 4-subdivisions of point config-
urations together with their tight spans which are the two two-dimensional complexes
from Lemma 6.8. To get a tetrahedron as tight span, take as point configuration a
tetrahedron with an inner point and cone from this point. This subdivision is a 4-split,
as discussed in the next section. Note that by Proposition 6.5 there also exist polytopes
with these tight spans.

Figure 6.1. 4-subdivisions and their tight spans.

Lemma 6.10. Let A be a point configuration and Σ a 5-subdivision of A. Then the
tight span of Σ cannot consist of a quadrangle and a triangle glued together at one edge.

Proof. Suppose there exists a point configuration A and a subdivision Σ with such
a tight span. We can now argue as in the proof of Proposition 6.2 by letting F be the
face of Σ dual to the quadrangle. We adopt the notion from the proof of Proposition 6.2.
The only case that is not covered by the argumentation there, is that where αi +αi+1 < π,
and Ci and Ci+1 are the cells corresponding to the vertices of the edge of the tight span
which is the intersection of the quadrangle and the triangle. However, in this case, we
simply do not take Ci ∪ Ci+1 as a new maximal cell, but C := Ci ∪ Ci+1 ∪ C?, where C?

is the cell of ∆ corresponding to the unique non-quadrangle vertex of the tight span.
One now directly sees that C is convex and the intersection property for the subdivision
holds by the same argumentation as in the proof of Proposition 6.2. �
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Figure 6.2. The 5-subdivisions with planar tight spans.
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Example 6.11. In Figure 6.2, we depict examples of 5-subdivisions covering all
planar tight spans that may occur. For the two topmost subdivisions it has to be
carefully checked that these are really coarsest subdivisions what is true because all
suitable unions are not convex.

Example 6.12. In Figure 6.3, we depict examples of 5-subdivisions with pure three-
dimensional tight spans. The first tight span is a pyramid, and the subdivision is
obtained by taking as point configuration the vertices of another pyramid P together
with any inner point v and take as maximal simplices the cones from v over all facets of P.
(This is the same construction as in the proof of Theorem 5.7; pyramids are self-dual.)
To the left, we have as tight span a bipyramid over a triangle, which is obtained in the
same way by taking a prism over a triangle with one inner point. The tight span of the
subdivision to the right of Figure 6.3 consist of two tetrahedra glued at a facet. To get
it, take a prism over a simplex with two inner points connected by an edge. In the same
way, one could take three inner point in a plane parallel to the top and bottom facets,
to get a 5-subdivision whose tight span consists of three tetrahedra all sharing an edge.
Taking as point configuration the vertices of two simplices, one of them in the interior
of the other, one can get a 5-subdivision whose tight span consists of four tetrahedra
all sharing a vertex. Altogether, we have described all pure three-dimensional complex
that may occur as the tight span of a 5-subdivision.

Example 6.13. An example of a subdivision with non-pure tight span is given in
Figure 6.4 (left). Its tight span is a tetrahedron with a triangle glued at an edge. The
point configuration A consists of the six vertices of an octahedron together with an
interior point. (Note that the inner point cannot be chosen arbitrarily in this case to
get a coarsest subdivision.) The subdivision Σ of A with maximal faces {2, 3, 4, 5, 7},
{1, 2, 5, 7}, {1, 3, 5, 7}, {2, 3, 4, 6}, and {1, 2, 3, 6, 7} can be show to be coarsest and its tight
span is as desired, as can be seen from Figure 6.4. Our last example is a 5-subdivision
with a two-dimensional tight span that is not planar. In Figure 6.4 (right), we depicted
a polytope subdivided into three simplices and one (rotated) prism over a triangle.
Reflecting this complex at the hexagonal facet, one arrives at a polytope with twelve
vertices subdivided into six simplices and two triangular prism. The union of each
pair of simplices is convex, hence we can replace them by their union, arriving at a
5-subdivision. The tight span of this 5-subdivision consists of three triangles that share
a common edge.

Remark 6.14. (a) In the proof of Lemma 6.10, we have the first case of a
simply connected polyhedral complex that cannot occur as a tight span of a
k-subdivision and is not excluded by Proposition 6.2 or Proposition 6.3.

(b) The examples in Figure 6.2 show that all simply connected and 2-connected
polyhedral complex with five vertices whose maximal faces are all triangles can
occur as the tight span of some point configuration. In fact, it can be shown
that this true for such complexes with an arbitrary number of vertices.

(c) The proof of Lemma 6.10 can be extended to show that the tight span of any
k-subdivision cannot be a (k − 1)-gon glued with a triangle.
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Figure 6.3. Some 5-subdivisions with pure three-dimensional tight spans.
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As we have seen in Lemma 6.8 and Lemma 6.10, all three-dimensional polytopes
with up to five vertices can appear as tight spans of k-subdivisions. Since all polytopes
can occur as the tight span of some subdivision by Theorem 5.7 it seem natural to
ask if all polytopes of dimension three or higher can occur as the tight span of some
k-subdivision. The following proposition answers this question negatively.

Proposition 6.15. Not all polytopes with dimension three or higher can occur as
tight spans of k-subdivisions. Especially, a prism over a triangle cannot occur as the
tight span of a 6-subdivision.

Proof. Suppose there exists some point configuration A and a subdivision Σ of A
such that TΣ(A) is a prism over a triangle. Denote by F the codimension-three-cell
of Σ corresponding to the prism itself, and by F1, F2, F3 the codimension-one-cells corre-
sponding to the three parallel edges of TΣ(A). Since F = F1 ∩ F2 ∩ F3 is of codimension
two in the Fi, either F1, F2, and F3 lie in a common hyperplane H, or for each of the
hyperplanes Hi spanned by one of the Fi the relative interiors of the other two lie on
the same side of Hi. In the first case, the hyperplane H defines a split of A, since the
intersection of H with the boundary of convA equals the intersection of F1 ∪ F2 ∪ F3

with the boundary, and hence cannot produce additional vertices. Obviously, this split
coarsens Σ.

In the second case, we denote by H+
i the one of the two (closed) halfspaces defined

by Hi that contains the two other faces. Obviously, C := convA ∩ H+
1 ∩ H+

2 ∩ H+
3 is

convex and the union of three maximal cells of Σ. So we can define a new subdivision Σ′

of A by replacing these three cells with C. Sine F1, F2, and F3 are facets of C, there also
cannot any non-trivial intersections, either, so Σ′ is a valid subdivision that coarsens Σ.

Altogether, Σ cannot be a coarsest subdivision of A and hence no 6-subdivision. �

6.2. k-Splits

As we have seen in the previous section, if k grows large there exist a lot of different
possible tight spans for k-subdivisions. So an investigation of general k-subdivisions
might be quite complicated. However, in this section we will investigate for each k a
special class of k-subdivisions which behave similar to splits. We call a k-subdivision ∆

of A a k-split if ∆ has an inner face of codimension k − 1.
It is easily seen that ∆ is a k-split if and only if the tight span T∆(A) is a (k − 1)-

dimensional simplex. All k-subdivisions are k-splits for k ∈ {1, 2, 3}. Especially, the splits
are the 2-splits.

Example 6.16. An example of a k-split is given by taking a (k − 1)-dimensional
simplex with a point in the interior and coning from that point. For an example of a
polytope (with less vertices than that one could obtain from Proposition 6.5), one can
take a bipyramid over a (k − 1)-dimensional simplex and cone from the edge connecting
the two pyramid vertices.

As to each split there corresponds a unique hyperplane, to each k-split (for k > 1)
there corresponds a unique subspace of codimension k − 1. However, for splits we
also have the property that if a hyperplane H defines a split, this split is uniquely
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Figure 6.4. Two 5-subdivisions and their tight spans.

Figure 6.5. A point configuration with a codimension-two-face (the in-
terior point) that corresponds to two different 3-splits.

determined by H. This does not hold any more for k-splits with k ≥ 3; see Figure 6.5
and Example 6.19.

In Proposition 5.10, we saw that a hyperplane H defines a split of a point configu-
ration if and only if it meets all edges E of A in a an element of A, E, or the empty
set. One direction of this generalizes to k-splits as follows.

Proposition 6.17. If U is the unique codimension-(k − 1)-subspace corresponding
to some k-split of a point configuration A, then the following equivalent conditions are
satisfied.

(a) U meets all faces F of A with dim F ≤ k − 1 in a face of A or corresponds to
an l-split on them with l ≤ k,

(b) U meets all faces of A in a face of A or corresponds to an l-split on them for
some l ≤ k,

(c) U meets all facets of A in a face of A or corresponds to an l-split on them for
some l ≤ k.
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Proof. First one sees, that if ∆ is a k-split of A, the induced subdivision to each
face of A has to be an l-split for l ≤ k, or the trivial subdivision. This implies that
all conditions has to be satisfied. That (a) implies (b) follows from the fact that if a
codimension-(k−1)-subspace U intersects some face F with dim F ≥ k in its interior, the
subspace U has to intersect some of the faces of F of dimension k − 1. The (c) is also
equivalent follows by applying the equivalence of (a) and (b) to A and its facets. �

However, in contrast to the split case, the converse of Proposition 6.17 does not
hold if k ≥ 3. For an example, consider the polytope depicted in Figure 6.6. The
codimension-two-subspace spanned by the top and bottom vertices does not correspond
to any 3-split.

Figure 6.6. A polytope with an inner edge that does not correspond to
a 3-split.

The most important property of splits is shared by the k-splits: They all are regular
subdivisions.

Theorem 6.18. All k-splits are regular.

Proof. Let A be a d-dimensional point configuration and ∆ a k-split of P. So ∆

has a unique interior face F of dimension d − (k − 1). We can assume that the origin is
contained in conv F. We now project ∆ onto the subspace orthogonal to F and obtain
a subdivision ∆′ of the (k − 1)-dimensional point configuration imA with the origin as
an interior vertex. If we now take for each face F of ∆′ the cone spanned by F we get
a polyhedral fan subdividing Rk−1. The dual complex of this fan is isomorphic to the
tight span of ∆′ and ∆. For each of the k rays ri of this fan (which correspond to interior
faces of dimension d − k + 2 of ∆) we take a vector ei of length one that spans this ray.
Now for each vertex p ∈ A we define the weight of p as

∑k−1
i=1 λi where the image p′ of p

under the projection is generated by the positive combination p′ =
∑k−1

i=1 λiei where only
those ei are positive for which the cone that contains a′ is generated by ri. This lifting
function defines ∆. �
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By setting the weight w as in the proof of Theorem 6.18, one gets an explicit descrip-
tion of the corresponding facet of the secondary polytope by specializing Equation (2.4).
Furthermore, one could define the k-split polyhedron k − SplitPoly(A) of a point config-
uration A by taking those inequalities for all l-splits with l ≤ k together with the Equa-
tions (2.3), and the semi-split polyhedron semi − SplitPoly(A) by taking the inequalities
for all k. Obviously, SplitPoly(A) ⊃ k−SplitPoly(A) ⊃ semi − SplitPoly(A) ⊃ SecPoly(A),
so we get new outer “approximations” for the secondary polytope.

We call a polytope P (or a point configuration A) totally k-splittable if all regular
subdivisions of P are common refinements of l-splits with l ≤ k. We call P totally semi-
splittable if P is totally k-splittable for some k, or, equivalently, all regular subdivisions
of P are common refinements of k-splits for some k. It is easily seen, that a d-dimensional
polytope (or a (d − 1)-dimensional point configuration) is totally semi-splittable if and
only if it is totally d-splittable.

Example 6.19. The 3-cube C3 is totally 3-splittable, hence totally semi-splittable.
It has 14 splits (see Example 2.19), and eight 3-splits: Each diagonal of the cube
corresponds to two 3-splits by subdividing C3 into three square pyramids with one of
the vertices of the diagonal as apex. By adding the eight inequalities corresponding to
this 3-splits to the split polytope of C3, we obtain a new computation of the secondary
polytope of C3, verifying the results of [75].

Example 6.20. The 4-cube C4 is not totally semi-splittable. The secondary poly-
tope of C4 has 80, 876 facets that come in 334 orbits (see [53]). Four of these orbits are
splits (see Example 2.20), five are 3-splits, and three are 4-splits.

One might ask whether there exists some generalization of the Split Decomposition
Theorem 2.21 to point configurations. For k-splits with arbitrary k, this is obviously
false, since, for example, the subdivision of the 3-cube to the left of Figure 2.3 can
be obtained as the common refinement of either three splits or two 3-splits (see also
Example 2.34). However, even if one fixes k ≥ 3, no similar result can be valid: The
triangulation to the left of Figure 6.7 can be obtained as the common refinement of the
3-split A and either of the two 3-splits B1, B2 in Figure 6.7.

A B1 B2

Figure 6.7. There is no unique 3-split decomposition.

A set S of k-splits (for either fixed or arbitrary k) is called weakly compatible if
there exists a common refinement of all Σ ∈ S. It is called compatible, if none of
the codimension-one-faces of two different Σ1,Σ2 intersect in the interior of convA. A
subdivision is called a k-split subdivision, if it is induced by a weakly compatible system
of l-splits with l ≤ k. In this way, also a generalization of the split complex can be
defined. It will still be a flag simplicial complex as in Proposition 2.25. However, one
has to be careful in defining an analogue of Splitw(A) since this will not be a simplicial
complex any more.
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6.3. Open Questions and Concluding Remarks

We have discussed some conditions on when polyhedral complexes can be the tight
span of some k-subdivision. However, we also gave examples that these conditions
are not sufficient. For complexes with a sole maximal cell, we showed that the only
possibility in dimension two is a triangle, and that in dimension three not all polytopes
may occur. This naturally leads to the following question.

Question 6.21. Which polyhedral complexes, especially, which polytopes occur as
tight spans of k-subdivisions?

It seams that k-splits are a very natural generalization of splits. In Chapter 4, we
classified all totally splittable polytopes.

Question 6.22. Which polytopes are totally k-splittable? Which polytopes are
totally semi-splittable?

The answer to this question might lead to interesting new classes of polytopes, the
class of all totally 3-splittable polytopes, all totally 4-splittable polytopes, and so on.
This would help to get new insights in the structure of secondary polytopes. Especially,
since for the class of totally 2-splittable polytopes all secondary polytopes are known
(see Example 4.6), a classification of totally k-splittable polytopes for small k ≥ 3 could
lead to explicit computations of some secondary polytopes.



CHAPTER 7

How To Draw Tropical Planes

This chapter is joint work with Anders Jensen, Michael Joswig, and Bernd Sturm-
fels [45].

7.1. Introduction

A line in tropical projective space TPn−1 is an embedded metric tree which is balanced
and has n unbounded edges pointing into the coordinate directions. The parameter space
of these objects is the tropical Grassmannian Gr(2, n). This is a simplicial fan [84],
known to evolutionary biologists as the space of phylogenetic trees with n labeled leaves
[73, Section 3.5], and known to algebraic geometers as the moduli space of rational
tropical curves [70].

Speyer [83, 82] introduced higher-dimensional tropical linear spaces. They are con-
tractible polyhedral complexes all of whose maximal cells have the same dimension d−1.
Among these are the realizable tropical linear spaces which arise from (d − 1)-planes in
classical projective space Pn−1

K over a field K with a non-archimedean valuation. Real-
izable linear spaces are parameterized by the tropical Grassmannian Gr(d, n), as shown
in [84]. Note that all trees (d = 2) are realizable. Tropical Grassmannians represent
compact moduli spaces of hyperplane arrangements. Introduced by Alexeev, Hacking,
Keel, and Tevelev [1, 44, 61], these objects are natural generalizations of the moduli

space M0,n.
In this chapter, we focus on the case d = 3. By a tropical plane we mean a two-

dimensional tropical linear subspace of TPn−1. It was shown in [84, Section 5] that all
tropical planes are realizable when n ≤ 6. This result rests on the classification of planes
in TP5 which is shown in Figure 7.1. We here derive the analogous complete picture of
what is possible for n = 7. In Theorem 7.10, we show that for larger n most tropical
planes are not realizable.

Tropical linear spaces are represented by vectors of Plücker coordinates. The ax-
ioms characterizing such vectors were discovered two decades ago by Andreas Dress who
called them valuated matroids. We therefore propose the name Dressian for the trop-
ical prevariety Dr(d, n) which parameterizes (d − 1)-dimensional tropical linear spaces
in TPn−1.

This paper is organized as follows. In Section 2, we review the formal definition of
the Dressian and the Grassmannian, and we present our results on Gr(3, 7) and Dr(3, 7).
These also demonstrate the remarkable scope of current software for tropical geometry.

Tropical planes are dual to regular matroid subdivisions of the hypersimplex ∆(3, n).
The theory of these subdivisions is developed in Section 3, after a review of matroid ba-
sics, and this allows us to prove various combinatorial results about the Dressian Dr(3, n).

97
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Figure 7.1. The seven types of generic tropical planes in TP5.
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A main contribution is the bijection between tropical planes and arrangements of
metric trees in Theorem 7.15. This bijection tropicalizes the following classical picture.
Every plane in Pn−1

K corresponds to an arrangement of n lines in P2
K, and hence to a

rank-three-matroid on n elements. Lines are now replaced by trees, and arrangements
of trees are used to encode matroid subdivisions. These can be non-regular, as shown
in Section 7.4. Section 7.5 answers the question in the title of this paper, and, in
particular, it explains the seven diagrams in Figure 7.1 and their 94 analogs for n = 7.
In Section 7.6, we extend the notion of Grassmannians and Dressians from ∆(k, n) to
arbitrary matroid polytopes.

We are indebted to Francisco Santos, David Speyer, Walter Wenzel, and Lauren
Williams for various comments.

7.2. Computations

Let I be a homogeneous ideal in the polynomial ring K[x1, . . . , xt] over a field K.
Each vector λ ∈ Rt gives rise to a partial term order and thus defines an initial ideal
inλ(I), by choosing terms of lowest weight for each polynomial in I. The set of all initial
ideals of I induces a fan structure on Rt. This is the Gröbner fan of I, which can be
computed using Gfan [56]. The subfan induced by those initial ideals which do not
contain any monomial is the tropical variety T(I). If I is a principal ideal then T(I) is a
tropical hypersurface. A tropical prevariety is the intersection of finitely many tropical
hypersurfaces. Each tropical variety is a tropical prevariety, but the converse does not
hold [78, Lemma 3.7].

Consider a fixed d×n-matrix of indeterminates. Then each d×d-minor is defined by
selecting d columns {i1, i2, . . . , id}. Denoting the corresponding minor pi1...id , the algebraic
relations among all d × d-minors define the Plücker ideal Id,n in K[pS ], where S ranges

over
(

[n]
d

)
, the set of all d-element subsets of [n] := {1, 2, . . . , n}. The ideal Id,n is a

homogeneous prime ideal. The tropical Grassmannian Gr(d, n) is the tropical variety of
the Plücker ideal Id,n. Among the generators of Id,n are the three term Plücker relations

(7.1) pS i j pS kl − pS ik pS jl + pS il pS jk ,

where S ∈
(

[n]
d−2

)
and i, j, k, l ∈ [n]\S are pairwise distinct. Here S i j is shorthand notation

for the set S ∪ {i, j}. The relations (7.1) do not generate the Plücker ideal Id,n ⊂ K[pS ]
for d ≥ 3, but they always suffice to generate the image of Id,n in the Laurent polynomial
ring K[p±1

S ].
The Dressian Dr(d, n) is the tropical prevariety defined by all three term Plücker

relations. The elements of Dr(d, n) are the finite tropical Plücker vectors of Speyer [83].
A general tropical Plücker vector is allowed to have ∞ as a coordinate, while a finite
one is not. The three term relations define a natural Plücker fan structure on the
Dressian Dr(d, n): two weight vectors λ and λ′ are in the same cone if they specify
the same initial form for each trinomial (7.1). In Sections 3 and 4, we shall derive an
alternative description of the Dressian Dr(d, n) and its Plücker fan structure in terms of
matroid subdivisions.

It is clear from the definitions that the Dressian contains the tropical Grassmannian
(over any field K) as a subset of R(n

d); but it is far from obvious how the fan structures
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are related. Results of [84] imply that the fans Gr(2, n) and Dr(2, n) are equal and that
Gr(3, 6) = Dr(3, 6) as sets. Using computations with the software systems Gfan [56],
homology [31], Macaulay2 [41], and polymake [37] we obtained the following results
about the next case (d, n) = (3, 7).

Theorem 7.1. Fix any field K of characteristic different from two. The tropical
Grassmannian Gr(3, 7), with its induced Gröbner fan structure, is a simplicial fan with
f -vector

(721, 16800, 124180, 386155, 522585, 252000) .

The homology of the underlying five-dimensional simplicial complex is free Abelian, and
it is concentrated in top dimension:

H∗
(
Gr(3, 7);Z)

= H5
(
Gr(3, 7);Z)

= Z7470 .

The result on the homology is consistent with Hacking’s theorem in [43, Theo-
rem 2.5]. Inspired by Markwig and Yu [69], we conjecture that the simplicial com-
plex Gr(3, 7) is shellable.

Theorem 7.2. The Dressian Dr(3, 7), with its Plücker fan structure, is a non-
simplicial fan. The underlying polyhedral complex is six-dimensional with f -vector

(616, 13860, 101185, 315070, 431025, 211365, 30) .

Its 5-skeleton is triangulated by the Grassmannian Gr(3, 7), and the homology is

H∗
(
Dr(3, 7);Z)

= H5
(
Dr(3, 7);Z)

= Z7440 .

The Grassmannian and the Dressian were defined as fans in R(n
d). One could also

view them as subcomplexes in the tropical projective space TP(n
d)−1, which is the compact

space obtained by taking (R∪{∞})(n
d)\{(∞, . . . ,∞)} modulo tropical scalar multiplication.

We adopt that interpretation in Section 7.6. Until then, we stick to R(n
d) but we take

its quotient modulo the common n-dimensional lineality space of both fans. This gives
pointed fans in R(n

d)−n. We represent these as polyhedral complexes in the sphere of

dimension
(

n
d

)
− n − 1. The resulting polyhedral complex Gr(d, n) is (d(n − d) − n)-

dimensional, and Dr(d, n) is a generally higher-dimensional polyhedral complex whose
support contains the support of Gr(d, n). These are the polyhedral complexes referred
to in Theorems 7.1 and 7.2. For instance, Gr(2, 5) = Dr(2, 5) is the Petersen graph.

We note that the combinatorial and algebraic notions in this paper are compatible
with the geometric theory developed in Mikhalkin’s book [70]. We here use “min” for
tropical addition, the set Tk−1 = Rk/R(1, 1, . . . , 1) is the tropical torus, and the tropical
projective space TPk−1 is a compactification of Tk−1 which is a closed simplex.

The symmetric group Sym7 acts naturally on both Gr(3, 7) and Dr(3, 7), and it makes
sense to count their cells up to this symmetry. The face numbers modulo Sym7 are

f (Gr(3, 7) mod Sym7) = (6, 37, 140, 296, 300, 125) and

f (Dr(3, 7) mod Sym7) = (5, 30, 107, 217, 218, 94, 1) .

Thus the Grassmannian Gr(3, 7) modulo Sym7 has 125 five-dimensional simplices, and
these are merged to 94 five-dimensional polytopes in the Dressian Dr(3, 7) modulo Sym7.
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One of these cells is not a facet because it lies in the unique cell of dimension six. This
means that Dr(3, 7) has 93 + 1 = 94 facets (= maximal cells) up to the Sym7-symmetry.

Each point in Dr(3, n) determines a plane in TPn−1. This map was described in [83,
84] and we recall it in Section 7.5. The cells of Dr(3, n) modulo Symn correspond to
combinatorial types of tropical planes. Facets of Dr(3, n) correspond to generic planes
in TPn−1:

Corollary 7.3. The number of combinatorial types of generic planes in TP6 is 94.
The numbers of types of generic planes in TP3, TP4, and TP5 are one, one, and seven,
respectively.

Proof. The unique generic plane in TP3 is the cone over the complete graph K4.
Planes in TP4 are parameterized by the Petersen graph Dr(3, 5) = Gr(3, 5), and the
unique generic type is dual to the trivalent tree with five leaves. The seven types
of generic planes in TP5 were derived in [84, Section 5]. Drawings of their bounded
parts are given in Figure 7.1, while their unbounded cells are represented by the tree
arrangements in Table 2 below. The number 94 for n = 7 is derived from Theorem 7.2.

�

A complete census of all combinatorial types of tropical planes in TP6 is posted at

www.uni-math.gwdg.de/jensen/Research/G3_7/grassmann3_7.html.

This web site and the notation used therein is a main contribution of this chapter. In
the rest of this section we explain how our two classification theorems were obtained.

Computational proof of Theorem 7.1. The Grassmannian Gr(3, 7) is the trop-
ical variety defined by the Plücker ideal I3,7 in the polynomial ring K[pS ] in 35 unknowns.
We first suppose that K has characteristic zero, and for our computations we take K = Q.
The subvariety of P34

Q defined by I3,7 is irreducible of dimension 12 and has an effective

six-dimensional torus action. The Bieri-Groves Theorem [5] ensures that Gr(3, 7) is a
pure five-dimensional subcomplex of the Gröbner complex of I3,7. Moreover, by [13, The-
orem 3.1], this complex is connected in codimension one. The software Gfan [56] exploits
this connectivity by traversing the facets exhaustively when computing Gr(3, 7) = T(I3,7).

The input to Gfan is a single maximal Gröbner cone of the tropical variety. The cone
is, as described in the Gfan manual, represented by a pair of Gröbner bases. Knowing
a relative interior point of a maximal cone we can compute this pair with the command

gfan_initialforms --ideal --pair

run on the input

Q[p123,p124,p125,p126,p127,p134,p135,p136,p137,p145,p146,p147,

p156,p157,p167,p234,p235,p236,p237,p245,p246,p247,p256,p257,p267,

p345,p346,p347,p356,p357,p367,p456,p457,p467,p567]

{

p123*p145-p124*p135+p125*p134,

....

p123*p456-p124*p356+p125*p346+p126*p345,

....
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p347*p567-p357*p467+p367*p457

}

( 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -3, -2, -2, -3, -2, 0, 0, 0, 0,

-3, -1, -2, -1, -2, -1, -2, -1, -3, -1, -2, -1, -3, -4, -3, -5).

The polynomials are the 140 quadrics which minimally generate the Plücker ideal I3,7.
Among these are 105 three-term relations and 35 four-term relations. Since Gfan uses
the max-convention for tropical addition, weight vectors have to be negated. The out-
put is handed over to the program gfan_tropicaltraverse, which computes all other
maximal cones. For this computation to finish it is decisive to use the -symmetry op-
tion. The symmetric group Sym7 acts on the tropical Plücker coordinates as a subgroup
of Sym35. In terms of classical Plücker coordinates, these symmetries only exist if we
simultaneously perform sign changes, such as p132 = −p123. We inform Gfan about these
sign changes using -torus, and we specify the sign changes on the input as elements
of {−1,+1}35 together with the generators of Sym7 ⊂ Sym35 after the Gröbner basis pair
produced above:

{(15,16,17,18,0,19,20,21,1,22,23,2,24,3,4,25,26,27,5,28,29,6,30,7,8,31,

32,9,33,10,11,34,12,13,14),(0,1,2,3,4,15,16,17,18,19,20,21,22,23,24,5,

6,7,8,9,10,11,12,13,14,25,26,27,28,29,30,31,32,33,34)}

{(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

(-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1)}

Before traversing Gr(3, 7), Gfan verifies algebraically that these indeed are symmetries.
In order to handle a tropical variety as large as Gr(3, 7), the implementation of

the traversal algorithm in [13] was improved in several ways. During the traversal
of the maximal cones up to symmetry, algebraic tests were translated into polyhedral
containment questions whenever possible. Since the fan turned out to be simplicial,
computing the rays could be reduced to linear algebra while in general Gfan uses the
double description method of cddlib [36]. In the subsequent combinatorial extraction
of all faces up to symmetry, checking if two cones are in the same orbit can be done at
the level of canonical interior points. Checking if two points are equal up to symmetry
was done by running through all permutations in the group. This may not be optimal
but is sufficient for our purpose. For further speed-ups we linked Gfan to the floating
point LP solver SoPlex [96] which produced certificates verifiable in integer arithmetic.
In case of a failure caused by round-off errors, the program falls back on cddlib which
solves the LP problem in exact arithmetic. The running time for the computation is
approximately 25 hours on a standard desktop computer with Gfan version 0.4, which
is expected to be released in the fall of 2008. The output of Gfan is in polymake [37]
format, and the program homology [31] was used to compute the integral homology.

The above computations established our result in characteristic zero. To obtain the
same result for prime characteristics p ≥ 3, we used Macaulay2 to redo all Gröbner
basis computations, one for each cone in Gr(3, 7), in the polynomial ring Z[pS ] over
the integers. We found that all but one of the initial ideals inλ(I3,6) arise from I3,6 via
a Gröbner basis whose coefficients are +1 and −1. Hence these cones of Gr(3, 7) are
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characteristic-free. The only exception is the Fano cone which will be discussed in the
end of Section 7.3. �

Computational proof of Theorem 7.2. For d = 3 and n = 7 there are 105
three-term Plücker relations (7.1). A vector λ ∈ R35 lies in Dr(3, 7) if and only if
the initial form of each three-term relation with respect to λ has either two or three
terms. There are four possibilities for this to happen, and each choice is described by
a linear system of equations and inequalities. This system is feasible if and only if
the corresponding cone exists in the Dressian Dr(3, 7), which can be tested using linear
programming. In theory, we could compute the Dressian by running a loop over all 4105

choices and list which choices determine a non-empty cone of Dr(3, 7). Clearly, this is
infeasible in practice.

To control the combinatorial explosion, we employed the representation of tropical
planes by abstract tree arrangements which will be introduced in Section 4. This rep-
resentation allows a recursive computation of Dr(3, n) from Dr(3, n − 1). The idea is
similar to what is described in the previous paragraph, but the approach is much more
efficient. By taking the action of the symmetric group of degree n into account and by
organizing this exhaustive search well enough, this leads to a viable computation. A
key issue seems to be to focus on the equations early in the enumeration, while the in-
equalities are considered only at the very end. A polymake implementation enumerates
all cones of Dr(3, 7) within one hour. The same computation for Dr(3, 6) takes less than
two minutes.

Again we used homology for computing the integral homology of Dr(3, 7). Since the
fan Dr(3, 7) is not simplicial it cannot be fed into homology directly. However, it is
homotopy equivalent to its crosscut complex, which thus has the same homology [11].
The crosscut complex (with respect to the atoms) is the abstract simplicial complex
whose vertices are the rays of Dr(3, 7) and whose faces are the subsets of rays which
are contained in cones of Dr(3, 7). The computation of the homology of the crosscut
complex takes about two hours. �

Remark 7.4. Following Dress and Wenzel [29, 30], a valuated matroid of rank d
on the set [n] is a map π : [n]d → R∪ {∞} such that π(ω) is independent of the ordering
of the sequence ω, π(ω) = ∞ if an element occurs twice in ω, and the following axiom
holds: for every (d − 1)-subset σ and every (d + 1)-subset τ = {τ1, τ2, . . . , τd+1} of [n] the
minimum of

π(σ ∪ {τi}) + π(τ\{τi}) for 1 ≤ i ≤ d + 1

is attained at least twice. Results of Dress and Wenzel [29] imply that tropical Plücker
vectors and valuated matroids are the same. To see this, one applies [29, Theorem 3.4]
to the perfect fuzzy ring arising from (R∪ {∞},min,+) via the construction described in
[29, page 182].
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7.3. Matroid Subdivisions

A weight function λ on an n-dimensional polytope P in Rn assigns a real number to
each vertex of P. The lower facets of the lifted polytope conv{(v, λ(v)) | v vertex of P} in
Rn+1 induce a polytopal subdivision of P. Polytopal subdivisions arising in this way are
called regular. The set of all weights inducing a fixed subdivision forms a (relatively
open) polyhedral cone, and the set of all these cones is a complete fan, the secondary
fan of P. The dimension of the secondary fan as a spherical complex is m− n− 1, where
m is the number of vertices of P. For a detailed introduction to these concepts see [19].

We denote the canonical basis vectors of Rn by e1, e2, . . . , en, and we abbreviate

eX :=
∑

i∈X ei for any subset X ⊆ [n]. For a set X ⊆
(

[n]
d

)
we define the polytope

PX := conv {eX | X ∈ X} .
The d-th hypersimplex in Rn is the special case

∆(d, n) := P(
[n]
d

) .

A subsetM ⊆
(

[n]
d

)
is a matroid of rank d on the set [n] if the edges of the polytope PM are

all parallel to the edges of ∆(d, n); in this case, PM is called a matroid polytope, and the
elements of M are the bases. That this definition really describes a matroid as, for ex-
ample, in White [94], is a result of Gel′fand, Goresky, MacPherson, and Serganova [38].
Moreover, each face of a matroid polytope is again a matroid polytope [35]. A polytopal
subdivision of ∆(d, n) is a matroid subdivision if each of its cells is a matroid polytope.

Proposition 7.5 (Speyer [83], Proposition 2.2). A weight vector λ ∈ R
(

[n]
d

)
lies in

the Dressian Dr(d, n) if and only if it induces a matroid subdivision of ∆(d, n).

The weight functions inducing matroid subdivisions form a subfan of the secondary
fan of ∆(d, n), and this defines the secondary fan structure on the Dressian Dr(d, n).
It is not obvious whether the secondary fan structure and the Plücker fan structure
on Dr(d, n) coincide. We shall see in Theorem 7.15 that this is indeed the case if d = 3. In
particular, the rays of the Dressian Dr(3, n) correspond to coarsest matroid subdivisions
of ∆(3, n).

Corollary 7.6. Let M be a connected matroid of rank d on [n] and let λM ∈ {0, 1}
(

[n]
d

)

be the vector which satisfies λM(X) = 0 if X is a basis of M and λM(X) = 1 if X is not
a basis of M. Then λM lies in the Dressian Dr(d, n), and the corresponding matroid
decomposition of ∆(d, n) has the matroid polytope PM as a maximal cell.

Proof. The basis exchange axiom for matroids translates into a combinatorial ver-
sion of the quadratic Plücker relations (cf. Remark 7.4), and this ensures that the vector
λM lies in the Dressian Dr(d, n). By Proposition 7.5, the regular subdivision of ∆(d, n)
defined by λM is a matroid subdivision. The matroid polytope PM appears as a lower
face in the lifting of ∆(d, n) by λM, and hence it is a cell of the matroid subdivision. It
is a maximal cell because dim(PM) = d − 1 if and only if the matroid M is connected;
see [35]. �
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Each vertex figure of ∆(d, n) is isomorphic to the product of simplices ∆d−1 × ∆n−d−1;
see Example 3.4 (a). A regular subdivision of a polytope induces regular subdivisions
on its facets as well as on its vertex figures. For hypersimplices the converse holds (see
also Proposition 7.16):

Proposition 7.7 (Kapranov [60], Corollary 1.4.14). Each regular subdivision of the
product of simplices ∆d−1 × ∆n−d−1 is induced by a regular matroid subdivision of ∆(d, n).

A split of a polytope is a regular subdivision with exactly two maximal cells.
Lemma 2.54 states that every split of ∆(d, n) is a matroid subdivision. Collections
of splits that are pairwise compatible define a simplicial complex, known as the split
complex of ∆(d, n). It was shown in Section 2.7 that the regular subdivision defined by
pairwise compatible splits is always a matroid subdivision. The following result is a
reformulation of Proposition 2.61:

Proposition 7.8. The split complex of ∆(d, n) is a simplicial subcomplex of the
Dressian Dr(d, n), with its secondary complex structure. They are equal if d = 2 (or
if d = n − 2).

Special examples of splits come about in the following way. The vertices adjacent
to a fixed vertex of ∆(d, n) span a hyperplane which defines a split; and these splits
are called vertex splits. Moreover, two vertex splits are compatible if and only if the
corresponding vertices of ∆(d, n) are not connected by an edge. Hence the simplicial
complex of stable sets of the edge graph of ∆(d, n) is contained in the split complex
of ∆(d, n).

Corollary 7.9. The simplicial complex of stable sets of the edge graph of the hyper-
simplex ∆(d, n) is a subcomplex of Dr(d, n). Hence, the dimension of the Dressian Dr(d, n)
is bounded below by one less than the maximal size of a stable set of this edge graph.

We shall use this corollary to prove the main result in this section. Recall that
the dimension of the Grassmannian Gr(3, n) equals 2n − 9. Consequently, the following
theorem implies that, for large n, most of the tropical planes (cf. Section 7.5) are not
realizable.

Theorem 7.10. The dimension of the Dressian Dr(3, n) is of order Θ(n2).

For the proof of this result we need one more definition. The spread of a vector
in Dr(d, n) is the number of maximal cells of the corresponding matroid decomposition.
The splits are precisely the vectors of spread two, and these are rays of Dr(d, n). The
rays of Dr(3, 6) are either of spread two or three; see [84, Section 5]. As a result of our
computation the spreads of rays of Dr(3, 7) turn out to be two, three, and four. We note
the following result.

Proposition 7.11. As n increases, the spread of the rays of Dr(3, n) is not bounded
by a constant.

Proof. By Proposition 7.7, each regular subdivision of ∆2 × ∆n−4 is induced by
a regular matroid subdivision of ∆(3, n), and hence, in light of the Cayley trick [80],
by mixed subdivisions of the dilated triangle (n − 3)∆2; see also Section 7.4. This
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correspondence maps rays of the secondary fan of ∆2 × ∆n−4 to rays of Dr(3, n). Now, a
coarsest mixed subdivision of (n − 3)∆2 can have arbitrarily many polygons as n grows
large. For an example consider the hexagonal subdivision in [80, Figure 12]. Hence a
coarsest regular matroid subdivision of ∆(3, n) can have arbitrarily many facets. �

Proof of Theorem 7.10. Speyer [83, Theorem 6.1] showed that the spread of

any vector in Dr(d, n) is at most
(

n−2
d−1

)
. This is the maximal number of facets of any

matroid subdivision of ∆(d, n). Consider a flag of faces F1 ⊂ F2 ⊂ · · · in Dr(d, n). For
every i the subdivision corresponding to Fi has more facets than that of Fi−1. Hence(

n−2
d−1

)
− 1 is an upper bound for the dimension of Dr(k, n). Specializing to d = 3, this

upper bound is quadratic.
We shall now apply Proposition 7.8 to derive the lower bound. The generalized

Fano matroid Fr is a connected simple matroid on 2r − 1 points which has rank 3 and
is defined as follows. Its three-element circuits are the lines of the (r − 1)-dimensional
projective space PGr−1(2) over the field GF(2) with two elements. The total number of
unordered bases of Fr, that is, non-collinear triples of points, equals

βr :=
1
6

(2r − 1)(2r − 2)(2r − 4) .

The number of vertices of ∆(3, 2r − 1) which are not bases of Fr equals

νr :=
(
2r − 1

3

)
− βr =

1
6

(2r − 1)(2r − 2)

We claim that the non-bases of Fr form a stable set in the edge graph of ∆(3, 2r − 1).
Indeed, the non-bases are precisely the collinear triplets of points, that is, the full point
rows of the lines in PGr−1(2). Two distinct point rows of lines in PGr−1(2) share at most
one point, and hence the two corresponding vertices of ∆(3, 2r − 1) do not differ by an
exchange of two bits, which means that they are not connected by an edge.

The quadratic lower bound is now derived from Proposition 7.8 as follows. For
given any n, let r be the unique natural number satisfying 2r − 1 ≤ n < 2r+1. Then the
generalized Fano matroid Fr yields a stable set of size νr = 1/6(2r−1)(2r−2) ≥ n2/24−n/12
in the edge graph of ∆(3, n). The latter inequality follows from 2r − 1 ≥ n/2 . �

Computational proof of Theorem 7.1 (continued). We still have to dis-
cuss the Fano cone of Dr(3, 7) and its relationship to Gr(3, 7). The matroid F3 in
the proof of Theorem 7.10 corresponds to the Fano plane PG2(2), which is shown in
Figure 7.2 on the left. We have β3 = 28 and ν3 = 7. Via Corollary 7.6, the Fano
matroid F3 gives rise to a cone in Dr(3, 7), which we call the Fano cone. The corre-
sponding cell of Dr(3, 7), seen as a polytopal complex, has dimension six. Moreover, all
30 six-dimensional cells of Dr(3, 7) come from the Fano matroid F3 by relabeling. They
form a single orbit under the Sym7 action since the automorphism group GL3(2) of F3

has order 168 = 5040/30. If the field K considered has characteristic two then the Fano
cell of Dr(3, 7) intersects Gr(3, 7) in a five-dimensional complex that looks like a tropical
hyperplane.

Finally, suppose that the characteristic of K is different from two. Then the inter-
section of the Fano cell with Gr(3, 7) is a five-dimensional simplicial sphere arising from
seven copies of the non-Fano matroid; see Figure 7.2 on the right. In this case this also
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gives us the difference in the homology of Dr(3, 7) and Gr(3, 7). The Fano 6-cells are
simplices. Each of them cancels precisely one homology cycle of Gr(3, 7). �

Figure 7.2. The point configurations for the Fano and non-Fano matroids.

In spite of the results in this sections, many open problems remain. Here are two spe-
cific questions we have concerning the combinatorial structure of the Dressian Dr(3, n):

. Are all rays of Dr(3, n) always rays of Gr(3, n)?

. Characterize the rays of Dr(3, n), that is, coarsest matroid subdivisions of ∆(3, n).

7.4. Tree Arrangements

Let n ≥ 4 and consider an n-tuple of metric trees T = (T1,T2, . . . , Tn) where Ti has the
set of leaves [n]\{i}. A metric tree Ti by definition comes with non-negative edge lengths,
and by adding lengths along paths it defines a metric di : ([n]\{i}) × ([n]\{i})→ R≥0. We
call the n-tuple T of metric trees a metric tree arrangement if

(7.2) di( j, k) = d j(k, i) = dk(i, j)

for all i, j, k ∈ [n] pairwise distinct. Moreover, considering trees Ti without metrics, but
with leaves still labeled by [n]\{i}, we say that T is an abstract tree arrangement if

. either n = 4;

. or n = 5, and T is the set of quartets of a tree with five leaves;

. or n ≥ 6, and (T1\i, . . . , Ti−1\i,Ti+1\i, . . . , Tn\i) is an arrangement of n − 1 trees
for each i ∈ [n].

Here T j\i denotes the tree on [n]\{i, j} gotten by deleting leaf i from tree T j. A quartet
of a tree is a subtree induced by four of its leaves.

The following result relates the two concepts of tree arrangements we introduced:

Proposition 7.12. Each metric tree arrangement gives rise to an abstract tree
arrangement by ignoring the edge lengths. The converse is not true: for n ≥ 9, there
exist abstract arrangements of n trees that do not support any metric tree arrangement.

Proof. The first assertion follows from the Four Point Condition; see [73, Theo-
rem 2.36]. An example establishing the second assertion is the abstract arrangement of
nine trees listed in Table 1, depicted in Figure 7.3, and explained in Example 7.18. �
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The hypersimplex ∆(d, n) is the intersection of the unit cube [0, 1]n with the affine
hyperplane

∑
xi = d. From this it follows that the facets of ∆(d, n) correspond to the

facets of [0, 1]n. We call the facet defined by xi = 0 the i-th deletion facet of ∆(d, n),
and the facet defined by xi = 1 the i-th contraction facet. These names come about
as follows: If M is a matroid on [n] of rank d, then the intersection of PM with the
i-th deletion (contraction) facet is the matroid polytope of the matroid obtained by
deleting (contracting) i. Each deletion facet of ∆(d, n) is isomorphic to ∆(d, n − 1), and
each contraction facet is isomorphic to ∆(d − 1, n − 1). We use the terms “deletion” and

“contraction” also for matroid subdivisions and for vectors in R
(

[n]
d

)
.

Lemma 7.13. Each matroid subdivision Σ of ∆(3, n) defines an abstract arrange-
ment T (Σ) of n trees. Moreover, if Σ is regular then T (Σ) supports a metric tree ar-
rangement.

Proof. Each contraction facet of ∆(3, n) is isomorphic to ∆(2, n− 1), and Σ induces
matroid subdivisions on n copies of ∆(2, n−1). But the matroid subdivisions of ∆(2, n−1)
are generated by compatible systems of splits and thus are dual to trees. Hence Σ gives
rise to a tree arrangement.

Now let Σ be regular with weight function λ. By adding or subtracting a suitable
multiple of (1, 1, . . . , 1) and subsequent rescaling, we can assume that λ attains values
between 1 and 2 only. The induced regular subdivisions of ∆(2, n − 1) are dual to trees
with n − 1 leaves. A weight function on ∆(2, n − 1) which takes values between 1 and 2

1
3

2
3

1 2

4

5

6

7 8 9

Figure 7.3. Abstract arrangement of nine caterpillar trees on eight
leaves encoding a matroid subdivision of ∆(3, 9) which is not regular; see
Table 1.



7.4. TREE ARRANGEMENTS 109

is a metric. The Split Decomposition Theorem of Bandelt and Dress [4, Theorem 2]
allows to read off the lengths on all edges of these trees; see also Theorem 2.21. �

Proposition 7.14. Let Σ and Σ̄ be two matroid subdivisions of ∆(3, n) such that Σ

refines Σ̄. If Σ and Σ̄ induce the same subdivision on the boundary of ∆(3, n) then Σ

and Σ̄ coincide.

Proof. Suppose that Σ strictly refines Σ̄. Then there is a codimension-one-cell F
of Σ which is not a cell in Σ̄. Let F̄ be the unique full-dimensional cell of Σ̄ that
contains F. In particular, F is not contained in the boundary of ∆(3, n). Then F is a
rank-three-matroid polytope F = PM of codimension one where M = M1 ∪M2 is the
disjoint union of a rank-one-matroid M1 and a rank-two-matroid M2. In particular,
F � PM1 × PM2 . Notice that the affine hull H of F is defined by the equation

∑
i∈I xi = 1

where we denote by I the set of elements of M1, all of which are parallel because of
rankM1 = 1.

Since F̄ is subdivided by H there exist vertices v,w of F̄ on either side of H. Now F̄
is also a matroid polytope of some matroid M̄ containing M as a submatroid. Up to
relabeling we can assume that v = e12i and w = e345 such that {1, 2, i} and {3, 4, 5} are
bases of M̄ which are not bases of M and where 1, 2 ∈ I and i, 3, 4, 5 < I. If i < {3, 4, 5}
we can exchange i in the basis {1, 2, i} by some j ∈ {3, 4, 5} to obtain a new basis of M̄.
Without loss of generality we can assume that i = 5 or j = 5. Hence {1, 2, 5} and {3, 4, 5}
are bases of M̄ that are not bases of M. Notice that e125 and e345 are still on different
sides of H as e12i and e125 are connected by an edge and {1, 2, 5} is not a basis of M.

Now, as rankMi ≤ 2, both M1 and M2 are realizable as affine point configurations
over R, and hence so isM. In the sequel we identifyM with a suitable point configura-
tion (with multiple points). This way we obtain a subconfiguration of five points in M
which looks like one of the two configurations shown in Figure 7.4.

3 4 5

1, 2

3, 4 5

1, 2

Figure 7.4. Two point configurations in the Euclidean plane.

Consider the intersection of ∆(3, n) with the affine space defined by x5 = 1 and
x6 = x7 = · · · = xn = 0. This gives us an octahedron C � ∆(2, 4) in the boundary
of ∆(3, n). The intersection S = F ∩ C is a square; it can be read off Figure 7.4 as the
convex hull of the four points e135, e145, e235, and e245. In particular, the square S is a cell
of Σ. However, since e125 and e345 are vertices of F̄ = PM̄ as discussed above, C is a cell
of Σ̄. We conclude that the square S is a cell of Σ but not a cell of Σ̄. By construction,
S ⊂ C is contained in the boundary of ∆(3, n). This yields the desired contradiction,
as Σ and Σ̄ induce the same subdivision on the boundary. �

Two metric tree arrangements are equivalent if they induce the same abstract tree
arrangement. The following is the main result of this section.



110 7. HOW TO DRAW TROPICAL PLANES

Theorem 7.15. The equivalence classes of arrangements of n metric trees are in
bijection with the regular matroid subdivisions of the hypersimplex ∆(3, n). Moreover,
the secondary fan structure on Dr(3, n) coincides with the Plücker fan structure.

Proof. By Lemma 7.13, each regular matroid subdivision defines a metric tree ar-
rangement. The harder direction is to show that each metric tree arrangement gives
rise to a regular matroid subdivision. We will prove this by induction on n. The hy-
persimplex ∆(3, 4) is a 3-simplex without any non-trivial subdivisions, and Dr(3, 4) is a
single point corresponding to the unique equivalence class of metric trees. The hyper-
simplex ∆(3, 5) is isomorphic to ∆(2, 5), and Dr(3, 5) = Gr(3, 5) � Gr(2, 5) is isomorphic
to the Petersen graph (considered as a one-dimensional polytopal complex). Also in
this case the result can be verified directly. This establishes the basis of our induction,
and we now assume n ≥ 6.

Let T be an arrangement of n metric trees with tree metrics d1, d2, . . . , dn. In view
of the axiom (7.2), the following map π : [n]3 → R ∪ {∞} is well-defined:

π(i, j, k) =


di( j, k) = d j(k, i) = dk(i, j) if i, j, k are pairwise distinct,

∞ otherwise.

In order to show that π is a tropical Plücker vector we have to verify that the minimum

min
{
πhi j + πhkl, πhik + πh jl, πhil + πh jk

}

is attained at least twice, for any pairwise distinct h, i, j, k, l ∈ [n]. Now, since n ≥ 6,
each 5-tuple in [n] is already contained in some deletion, and hence the desired property
is satisfied by induction. We conclude that the restriction of the map π to increasing
triples i < j < k is a finite tropical Plücker vector, that is, it is an element of Dr(3, n).
By Proposition 7.5, the map π defines a matroid subdivision Σ(T ) of ∆(3, n).

Consider any metric tree arrangement T ′ that is equivalent to T . The maps π and π′

associated with T and T ′ respectively clearly lie in the same cone of the Plücker fan
structure on Dr(3, n). What we must prove is that they are also in the same cone of the
secondary fan structure on Dr(3, n). Equivalently, we must show that Σ(T ′) = Σ(T ).

Suppose the secondary fan structure on Dr(3, n) is strictly finer than the Plücker
fan structure. Then there is a regular matroid subdivision Σ of ∆(3, n) whose secondary
cone S (Σ) is strictly contained in the corresponding cone P(Σ) of tropical Plücker vec-
tors. We fix a weight function λ in the boundary of S (Σ) which is contained in the
interior of P(Σ). The matroid subdivision induced by λ is denoted by Σ̄. By construc-
tion, Σ strictly refines Σ̄, and, by induction, we can assume that Σ and Σ̄ induce the
same subdivision on the entire boundary of ∆(3, n). Due to Proposition 7.14, we have
that Σ = Σ̄, and this completes our proof. �

We saw in Proposition 7.7 that each regular subdivision of ∆2 × ∆n−4 is induced by
a regular matroid subdivision of ∆(3, n). This implies that Dr(3, n) contains a distin-
guished (2n− 9)-dimensional sphere, dual to the secondary polytope of ∆2 ×∆n−4, which
parameterizes all arrangements of n−3 lines in the tropical plane TP2. It has the follow-
ing nice description in terms of tree arrangements. Let L1, L2, . . . , Ln−3 be the n− 3 lines
and let Lx, Ly, Lz denote the three boundary lines of TP2. Each of these n lines translates
into a tree. The tree for Lx is obtained by branching off the leaves {1, 2, . . . , n−3} on the
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path between leaves y and z, in the order in which the L j intersect Lx. The trees for Ly

and Lz are analogous. The tree for Li has one distinguished node with long branches
to the three special leaves x, y and z. Along the path from the distinguished node to
leaf x we branch off additional leaves j for each line L j that intersects the line Li in its
x-halfray. This branching takes place in the order in which the lines L j intersect L j.
In this manner, every arrangement of n − 3 lines in TP2 translates into an arrangement
of n trees.

The same construction also applies to arrangements of n − 3 tropical pseudolines
in TP2 as defined by Ardila and Develin [2]. We shall now describe this in terms
of lozenge tilings as in [80]. Let Σ be any polytopal subdivision of ∆2 × ∆n−4. The
Cayley Trick encodes Σ as a mixed subdivision M(Σ) of (n − 3)∆2, a regular triangle
of side length n − 3. By [80, Theorem 3.5] the mixed subdivisions of dilated triangles
are characterized as those polygonal subdivisions whose cells are tiled by lozenges and
upward triangles (with unit edge lengths). Here a lozenge is a parallelogram which is
the union of one upward triangle and one downward triangle. We call a mixed cell even
if it can be tiled by lozenges only. Those which need an upward triangle in any tiling
are odd. A counting argument now reveals that each mixed subdivision of (n − 3)∆2

contains up to n − 3 odd polygonal cells.

Proposition 7.16. Each polytopal subdivision Σ of ∆2 × ∆n−4, or each mixed sub-
division M(Σ) of the triangle (n − 3)∆2, determines an abstract arrangement T (Σ) of n
trees.

Proof. Assume that Σ is a triangulation. Equivalently, M(Σ) has exactly n − 3
odd cells, all of which are upward triangles, and the even cells are lozenges. Placing a
labeled node into each upward triangle defines a tree in the dual graph of Σ. Each of its
three branches consists of the edges in M(Σ) which are in the same parallel class as one
fixed edge of that upward triangle. Two opposite edges in a lozenge are parallel, and
the parallelism that we refer to is the transitive closure of this relation. Each parallel
class of edges extends to the boundary of the triangle (n − 3)∆2. Doing so for all the
upward triangles, we obtain an arrangement of tropical pseudo-lines [2]. Each of these is
subdivided by the intersection with the other tropical pseudo-lines. We further add the
three boundary lines of the big triangle to the arrangement. This specifies an abstract
tree arrangement T (Σ). Note that the trees in the arrangement partition the dual graph
of the lozenge tiling.

Now we consider the situation where Σ is not a triangulation, so M(Σ) is a coarser
mixed subdivision of (n − 3)∆2. We shall associate a tree arrangement with M(Σ). Pick
any triangulation Σ′ which refines Σ. Then by the above procedure we have an abstract
tree arrangement T (Σ′) induced by Σ′. Then, as Σ′ refines Σ, one can contract edges
in the trees of the arrangement T (Σ′). In this way, one also arrives at an abstract
arrangement of n trees. Three of them correspond to the boundary lines of (n − 3)∆2.
The n−3 non-boundary trees are assigned to the ≤ n−3 odd cells. Each cell is assigned at
least one tree. We note that T (Σ) might depend on the choice of the triangulation Σ′. �

Example 7.17. Let n = 6 and consider the two mixed subdivisions of 3∆2 shown
in Figure 7.5. The left one is a lozenge tiling which encodes a regular triangulation
of ∆2 ×∆2, here regarded as the vertex figure of ∆(3, 6) at e135. There are precisely three
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Figure 7.5. Mixed subdivisions of 3∆2 and abstract arrangements of six trees.

upward triangles, and each of them corresponds to a tree. Moreover, the three sides of
the big triangle encode three more trees. Using the notation of Figure 7.6, this abstract
tree arrangement equals

(7.3) 34 2 56 , 34 1 56 , 12 4 56 , 12 3 56 , 12 6 34 , 12 5 34 .

c

a b d e

Figure 7.6. We use the notation ab c de for this tree on five labeled leaves.

The tiling of 3∆2 on the right in Figure 7.5 is a mixed subdivision which coarsens
the lozenge tiling discussed above. It corresponds to the abstract tree arrangement

34 2 56 , 34 1 56 , 12 (456) , 12 (356) , 12 6 34 , 12 5 34 .

The tree ab (cde) is obtained from the tree ab c de by contracting the interior edge
between c and the pair de. The odd polygonal cells (shaded in Figure 7.5) correspond
to trees. �

Example 7.18. An example of a non-regular matroid subdivision arises from the
lozenge tiling of 6∆2 borrowed from [80] and shown in Figure 7.3. This picture translates
into the abstract arrangement of nine trees in Table 1. The corresponding matroid
subdivision of ∆(3, 9) is not regular. The Dressian Dr(3, 9) has no cell for this tree
arrangement. �

Remark 7.19. There are 187 lozenge tilings of 4∆2, each representing 24 triangu-
lations of ∆3 × ∆2 via the 4! = 24 ways of labeling the upward triangles. Each lozenge
tiling defines an arrangement of seven trees that indexes a maximal cell of Dr(3, 7).
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Table 1. Abstract arrangement of nine caterpillar trees on eight leaves
encoding a matroid subdivision of ∆(3, 9) which is not regular; see Fig-
ure 7.3. The notation for caterpillar trees is explained in Figure 7.8 below.

Tree 1: C(24, 6598, 37) Tree 2: C(14, 5768, 39) Tree 3: C(17, 5846, 29)
Tree 4: C(12, 6579, 38) Tree 5: C(26, 4198, 37) Tree 6: C(14, 5729, 38)
Tree 7: C(13, 5894, 26) Tree 8: C(15, 7346, 29) Tree 9: C(15, 7468, 23)

In other words, the polytopal 5-sphere dual to the secondary polytope of ∆2 × ∆3 has
4488 = 187 · 24 facets, and embeds as a subcomplex into Dr(3, 7). It is instructive to
study this subcomplex by browsing our website for Dr(3, 7). For example, the tropical
plane of type 89 on our website corresponds to Figure 4 in [2].

Remark 7.20. Another important sphere sitting inside the Grassmannian Gr(d, n),
and hence in the Dressian Dr(d, n), is the positive Grassmannian Gr+(d, n), due to Speyer
and Williams [85]. A natural next step would be to introduce and study the positive
Dressian Dr+(d, n). Generalizing [85, Section 5], the positive Dressian Dr+(3, n) would
parameterize metric arrangements of planar trees. This space contains the (2n − 9)-
dimensional sphere Gr+(3, n). It would be interesting to know whether this inclusion is
a homotopy equivalence, to explore relations with cluster algebras, and to extend the
computation of Gr+(3, 7) presented in [85]. Incidentally, there is a misprint in the right
part of [85, Table 2]: the eleventh inequality should be “−x5 ≤ −14” instead of “−17”.
With this correction, we independently verified the f -vector and the rays of its normal
fan F3,7. �

7.5. Tropical Planes

We are now finally prepared to answer the question raised in the title of this paper.
Tropical planes are contractible polyhedral surfaces that are dual to the regular matroid
subdivisions of ∆(3, n). Consider any vector p in R(n

3) that lies in the Dressian Dr(3, n).
The associated tropical plane Lp in TPn−1 is the intersection of the tropical hyperplanes

T(pi jkxl + pi jlxk + piklx j + p jklxi)

as {i, j, k, l} ranges over all 4-element subsets of [n]. By a tropical plane, we mean any
subset of TPn−1 which has the form Lp for some p ∈ Dr(3, n). The tropical plane Lp is
realizable as the tropicalization of a classical plane in Pn−1

K if and only if p ∈ Gr(3, n). The
plane Lp is called series-parallel if each cell in the corresponding matroid subdivision
of ∆(3, n) is the graphic matroid of a series-parallel graph. Results of Speyer [83, 82]
imply:

Proposition 7.21. Let L be a tropical plane in TPn−1 with f0(L) vertices, f b
1 (L)

bounded edges, f u
1 (L) unbounded edges, f b

2 (L) bounded 2-cells and f u
2 (L) unbounded 2-

cells. Then

f0(L) ≤ (n − 2)(n − 3)/2, f b
1 (L) ≤ (n − 4)(n − 3), f u

1 (L) ≤ n(n − 3),
f b
2 (L) ≤ (n − 4)(n − 5)/2, f u

2 (L) ≤ 3n(n − 1)/2 .

These five inequalities are equalities if and only if L is a series-parallel plane.
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The unbounded edges and 2-cells of a tropical plane correspond to the nodes and
edges of the n trees in the corresponding tree arrangement. Suppose the trees are
trivalent. Then each tree has n− 1 leaves and n− 3 nodes, for a total of f u

1 (L) = n(n− 3)
nodes. Moreover, each tree has n− 4 interior edges and n− 1 pendent edges. The latter
are double-counted. This explains the number f u

2 (L) = n(n − 4) + n(n − 1)/2 of edges
in the tree arrangement representing L. To understand this situation geometrically, we
identify TPn−1 with an (n−1)-simplex, and we note that the tree arrangement is obtained
geometrically as the intersection L ∩ ∂TPn−1 of L with the boundary of that simplex.

The first answer to our question of how to draw a tropical plane is given by The-
orem 7.15: simply draw the corresponding tree arrangement. This answer has
the following interpretation as an algorithm for enumerating all tropical planes. To
draw all (generic) planes L in TPn−1, we first list all trees on n − 1 labeled leaves. Each
labeled tree occurs in n relabelings corresponding to the sets [n]\{1}, [n]\{2}, . . . , [n]\{n}
of labels. Inductively, one enumerates all arrangements of 4, 5, . . . , n trees. This näıve
approach works well for n ≤ 6. The result of the enumeration is that, up to relabeling
and restricting to trivalent trees, there are precisely seven abstract tree arrangements
for n = 6. They are listed in Table 2. Each tree is written as ab c de, the notation intro-
duced in Figure 7.6. We then check that each of the seven abstract tree arrangements
supports a metric tree arrangement, and we conclude that Dr(3, 6) has seven maximal
cells modulo the natural action of the group Sym6. The names for the seven types of
generic planes are the same as in [84, Section 5] and in Figure 7.1.

Table 2. The trees corresponding to the seven types of tropical planes in TP5.

Type Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 6 Orbit Size

EEEE 23 6 45 13 5 46 12 4 56 15 3 26 14 2 36 24 1 35 30
EEEG 26 5 34 16 5 34 14 2 56 13 2 56 12 3 46 12 3 45 240
EEFF(a) 25 6 34 15 6 34 12 5 46 12 5 36 12 6 34 12 5 34 90
EEFF(b) 25 6 34 15 6 34 12 6 45 12 6 35 12 6 34 12 5 34 90
EEFG 25 6 34 15 6 34 24 1 56 23 1 56 12 6 34 12 5 34 360
EFFG 34 2 56 34 1 56 12 6 45 12 6 35 12 6 34 12 5 34 180
FFFGG 34 2 56 34 1 56 12 4 56 12 3 56 12 6 34 12 5 34 15

It is easy to translate the seven rows in Table 2 into seven pictures of tree ar-
rangements. For example, the representative for type FFFGG in the last row coincides
with (7.3) and its picture appears on the left side in Figure 7.5. It can be checked in the
pictures that each of the seven tree arrangements has f u

1 (L) = 18 nodes and f u
2 (L) = 27

edges.
The second answer to our question of how to draw a tropical plane is given by

Figure 7.1: simply draw and label the bounded cells. The planes L in the last six
rows of Table 2 are series-parallel. Here, the complex of bounded cells in L has f0(L) = 6
nodes, f b

1 (L) = 6 edges and f b
2 (L) = 1 two-dimensional cell. The first type EEEE is not

series-parallel: its bounded complex is one-dimensional, with four edges and five nodes.
Each node of (the complex of bounded cells of) a tropical plane L is labeled by a

connected rank-3-matroid. This is the matroid whose matroid polytope is dual to that
node in the matroid subdivision of ∆(3, n) given by L. For n = 6 only three classes of



7.5. TROPICAL PLANES 115

matroids occur as node labels of generic planes. These matroids are denoted {A, B,C,D},
[A, B,C,D](E), or 〈A; a; (b, c, d, e)〉. Here capital letters are non-empty subsets of and
lower-case letters are elements of the set {1, 2, 3, 4, 5, 6}. All three matroids are graphical.
The corresponding graphs are shown in Figure 7.7. Note that an edge labeled with a
set of l points should be considered as l parallel edges each labeled with one element of
the set.

D

A

B

C

D

A

B

C

E
f

c

d

e

A b

Figure 7.7. The graphic matroids corresponding to the labels
{A, B,C,D}, [A, B; C,D](E) and 〈A; b; (c, d, e, f )〉 used for the nodes in Fig-
ure 7.1.

The underlying graph of the matroid 〈A; b; (c, d, e, f )〉 is the complete graph K4. The
set A is a singleton, and thus its automorphism group is the full symmetric group Sym4
of order 24 acting on the four nodes of K4. This matroid occurs in the unique orbit of
planes (of type EEEE) in TP6 whose bounded parts are not two-dimensional. The series-
parallel planes use only the matroids {A, B,C,D} and [A, B; C,D](E) for their labels.

The third answer to our question is the synthesis of the previous two: draw both
the bounded complex and the tree arrangement. The two pictures can be connected,
by linking each node of L to the adjacent unbounded rays and 2-cells. This leads to
an accurate diagram of the tropical plane L. The reader might enjoy drawing these
connections between the seven rows of Table 2 and the seven pictures in Figure 7.1.

The analogous complete description for n = 7 is a main contribution of this paper.
Based on the computational results in Section 2, we prepared an online census of Gr(3, 7)
and Dr(3, 7), with a picture for each bounded complex. This is posted at our website

www.uni-math.gwdg.de/jensen/Research/G3_7/grassmann3_7.html.

a

b c d e

f

a

b c

d

ef

Figure 7.8. Caterpillar tree C(ab, cd, e f ) and snowflake tree S(ab, cd, e f ).
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The maximal cells of the Dressian Dr(3, 7) correspond to arrangements of seven
trivalent trees. As part of our computations, we found that for n = 7 there is no
difference between abstract tree arrangements and metric tree arrangements: nothing
like Example 7.18 exists in this case. To draw the tree arrangements, we note that there
are two distinct trivalent trees on six leaves. These are the caterpillar and the snowflake
trees depicted in Figure 7.8. Caterpillar trees exist for all n ≥ 5, and are encoded using a
natural generalization of the notation in Figure 7.6. Note, for instance, the caterpillars
with eight leaves in Table 1.

We conclude with a brief discussion of the 94 generic planes depicted on our website.
Four types of node labels occur in the Dressian Dr(3, 7). First of all, the matroids
{A, B,C,D}, [A, B,C,D](E), and 〈A; b; (c, d, e, f )〉 appear again. Here capital letters are
non-empty subsets of and lower-case letters are elements of {1, 2, . . . , 7}. The other
matroid which occurs is the Fano matroid F3 arising from the projective plane PG2(2);
see Figure 7.2 (left). It corresponds to the six-dimensional cells of Dr(3, 7) generated
by seven vertex splits. Each such 6-cell admits seven coarsenings arising from omitting
one of the seven splits. These coarsenings correspond to the non-Fano matroid; see
Figure 7.2 (right).

7.6. Restricting to Pappus

The Grassmannian Gr(d, n) is a variety and the Dressian Dr(d, n) is a prevariety. We

now consider these two inside the tropical projective space TP(n
d)−1. That projective

space is a simplex, and it makes sense to study their intersections with each (relatively

open) face of TP(n
d)−1. That intersection is non-empty only if the face corresponds to a

matroid M of rank d on [n]. This leads to the following relative versions of our earlier
definitions.

We define the Grassmannian Gr(M) of a matroidM to be the tropical variety defined
by the ideal IM which is obtained from the Plücker ideal by setting to zero all variables pX

where X is not a basis ofM. We define the Dressian Dr(M) to be the tropical prevariety
given by the set of quadrics which are obtained from the quadratic Plücker relations by
setting to zero all variables pX where X is not a basis ofM. Equivalently, in the language
of [29, 30], the Dressian Dr(M) is the set of all real-valued valuations of the matroidM.
As before, Gr(M) is a subfan of the Gröbner fan of IM, the Dressian Dr(M) is a subfan of
the secondary fan of the matroid polytope ofM, and we regard these fans as polyhedral
complexes after removing the lineality space and intersecting with a sphere. Note that
the cells of Dr(M) are in bijection with the regular matroid subdivisions of the matroid
polytope of M. The Grassmannian Gr(d, n) and the Dressian Dr(d, n) discussed in the
previous sections are special cases where M is the uniform matroid of rank d on n
elements. The Dressian Dr(d, n) contains the Dressians of all matroids of rank d on n
elements as subcomplexes at infinity.

In this final section we examine these concepts in detail for one important example,
namely, we take M to be the Pappus matroid. Here d = 3, n = 9, M has 75 bases, and
the non-bases are the nine lines in the Pappus configuration shown in Figure 7.9 (left):

123, 148, 159, 247, 269, 357, 368, 456, 789 .
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The ideal IM is the ideal in the polynomial ring in 75 variables obtained from the Plücker
ideal by setting the corresponding nine Plücker coordinates to zero: p123 = · · · = p789 = 0.

1 2 3

4
5

6

7 8 9

1 2 3

6
5

4

7 8 9

Figure 7.9. Pappus configuration (left) and Hessian configuration (right).

The realization space of the Pappus configuration modulo projective transformations
is two-dimensional, and the Grassmannian Gr(M) is the corresponding tropical surface.
We shall determine the underlying graph and how it embeds into the Dressian Dr(M).

Proposition 7.22. The Grassmannian Gr(M) of the Pappus matroidM is a graph
with 19 nodes and 30 edges. One of the nodes gets replaced by a triangle in the Dres-
sian Dr(M). The Dressian Dr(M) is a simplicial complex with 18 vertices, 30 edges and
one triangle.

Proof. What follows is a detailed description, first of Gr(M) and later of Dr(M).
The Grassmannian Gr(M) has three split nodes, represented by the bases 167, 258 and
349 of the Pappus matroidM. These three bases are characterized by the property that
their 2-element subsets form 2-point lines. The corresponding matroid subdivisions are
vertex splits, and they are the only splits of the matroid polytope PM. The three split
vertices have valence four, and they are connected to a special trivalent core node C.

The remaining 15 nodes are all trivalent in Gr(M), and their subgraph corresponds
to the vertices and edges of the complete bipartite graph K3,3. The six vertices of K3,3

correspond to six Graves nodes, one for each of the Graves triads in the Pappus configu-
ration. A Graves triad is a partition of the nine points into three bases whose 2-element
subsets span 3-point lines. Each Graves node defines a matroid subdivision with three
maximal cells. The three corresponding matroids have 52 bases, and they are obtained
geometrically by merging together the three points in a triple of the Graves triad. For
example, the first matroid in the subdivision defined by the Graves triad {145, 237, 689}
is obtained from the Pappus matroid by making one, four, and five parallel elements.

The six Graves triads form the vertices of the graph K3,3 shown in Figure 7.10. On
each of the nine edges lies a connector node of Gr(M), which is between two Graves
nodes and also adjacent to one of the three split nodes. Each connector node defines
a matroid subdivision with seven maximal cells. The number of bases of these seven
matroids are 36, 36, 36, 40, 40, 40, 51. For a concrete example consider the two adjacent
Graves triads {145, 237, 689} and {189, 236, 457}. On the edge between them in K3,3 we
find a connector node which is also adjacent to the split node 167. The seven matroids
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{124, 378, 569} {129, 356, 478}

{135, 279, 468} {138, 246, 579}

{189, 236, 457} {145, 237, 689}

Figure 7.10. Complete bipartite graph formed from the Graves triads.

in the matroid subdivision of PM represented by that connector node are the rows in
the following table:

number of bases parallelism classes

51 {8, 9}, {2, 3}, {4, 5}
40 {2, 3, 6, 7}
40 {1, 4, 5, 7}
40 {1, 6, 8, 9}
36 {4, 5, 7}, {6, 8, 9}
36 {1, 4, 5}, {2, 3, 6}
36 {1, 8, 9}, {2, 3, 7}

We now come to the Dressian Dr(M) of the Pappus matroidM. This is a non-pure
complex whose facets are one triangle and 27 edges. It is obtained from Gr(M) by
removing the core node and replacing it with the core triangle whose nodes are the
split nodes 167, 258 and 349. Thus Dr(M) has 18 vertices, 30 edges and one triangle.
The core triangle of Dr(M) represents the matroid subdivision which is obtained from
the Pappus matroid polytope by slicing off the three vertices 167, 258 and 349. What
remains is the matroid polytope of the Hessian configuration shown in Figure 7.9. This
is the matroid associated with the affine plane over the field GF(3) with three elements.
Collinearity of any eleven of its twelve triples implies collinearity of the last. It is
this incidence theorem which explains the difference between Gr(M) and Dr(M). An
algebraic witness is offered by the expression

p289 p389 p489 p569 p589 p167 − p189 p389 p489 p569 p679 p258 + p189 p289 p569 p589 p678 p349 .

This trinomial lies in the Pappus ideal IM, and it shows that the tropical variety of IM
does not contain the entire triangular cone spanned by the basis vectors e167, e258, e349.
As the minimum must be attained at least twice, we conclude that, locally on the core
triangle of the Dressian Dr(M), the Grassmannian Gr(M) looks like a tropical line. �



CHAPTER 8

Loose Ends

8.1. Ehrhart Theory and Commutative Algebra

In this section, we will explain the relation of Ehrhart theory and commutative
algebra to polytope triangulations. The focus is laid on the relation of the face numbers
of faces of the triangulation and similar data in the other fields. The h-vector h =

(h0, . . . , hd) of a triangulation Σ of a d-dimensional polytope P is formally defined as

hk :=
∑k

i=0(−1)k−i
(

d+1−i
d+1−k

)
fi−1, where fi is the number of i-dimensional faces of Σ (where the

empty face is considered to have dimension −1). Since fk =
∑k+1

i=0

(
d+1−i
k+1−i

)
hi the f - and the

h-vector depends monotonously on each other.
We will first describe basic notions and results in Ehrhart theory and commutative

algebra and the relation of this topics to regular triangulations of polytopes. In the last
subsection, we attempt to generalize some of this to arbitrary regular subdivisions. In
particular, we will give an algebraic criterion for the coherency of weight functions.

8.1.1. Ehrhart Theory. Let P ⊂ Rd be a polytope with rational vertices. For a
positive integer n we define

i(P, l) = |{x ∈ P | lx ∈ Zl}| .

These numbers were first studied by Ehrhart [34]. The formal power series

EhrP(t) :=
∞∑

i=1

i(P, i)ti

is called the Ehrhart series of P.
A polytope with integral vertices is called a lattice polytope. It is a classical result of

Ehrhart (conjectured in [32, Théorème 5 (conjecture)] and proved in [33, Théorème 1])
that for all lattice polytopes P there exists a polynomial LP such that LP(l) = i(P, l) for
all l ∈ N0. This polynomial is called the Ehrhart polynomial of P. From this one can
deduce (see e.g., [87, Theorem 2.1]) that there exists a vector h ∈ Nd+1

0 such that

EhrP(t) =

∑d
i=0 hiti

(1 − t)d+1 .

We call this vector h the Ehrhart h-vector of P. It can be computed from the Ehrhart
series as follows.

119
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Lemma 8.1. Let P be a lattice polytope with Ehrhart series EhrP(t) :=
∑∞

i=1 i(P, i)ti.
Then the Ehrhart h-vector of P is given by

hi =

i∑

k=0

(−1)k

(
d + 1

k

)
i(P, i − k) .

Proof. By definition, we have

d∑

i=0

hiti = (1 − t)d+1 · EhrP(t)

=


d+1∑

j=0

(−1) j

(
d + 1

j

)
ti



∞∑

i=1

i(P, i)ti



=

∞∑

i=1


i∑

k=0

(
d + 1

k

)
i(P, i − k)

 ti .

This shows the claim. �

The following consequence of a theorem by Stanley [87, Corollary 2.5] gives us now
the relation to polytope triangulations. A triangulation Σ of a lattice polytope is called
unimodular, if all S ∈ Σ have normalized volume one.

Theorem 8.2. Let P ⊂ Rd be a lattice polytope and Σ a unimodular triangulation
of P. Then the h-vector of Σ equals the Ehrhart h-vector of P.

Since the Ehrhart h-vector of a polytope P is independent of the choice of a trian-
gulation Σ, this implies the following.

Corollary 8.3. [87, Corollary 2.7] All unimodular triangulations of a lattice poly-
tope have the same f -vector.

The results of Stanley can suitably be generalized for non-unimodular triangulations
(see e.g., [74, Theorem 1.1]) and this leads to the following.

Corollary 8.4. Let P be a polytope and Σ a triangulation of P. Then the Ehrhart
h-vector of P is an upper bound for the h-vector of Σ.

The following lemma says that maximizing the Ehrhart h-vector is equivalent to
maximizing the Ehrhart series:

Lemma 8.5. For a polytope P, the coefficients of the Ehrhart series of P depend
monotonously on the Ehrhart h-vector of P.

Proof. By direct computation: One has

∞∑

i=1

i(P, i)ti =

∑d
i=0 hiti

(1 − t)d+1 =

d∑

i=0

hiti


∞∑

j=0

t j


d+1

,

and since all coefficients on the right are positive, one get that increasing some hi

increases also the i(P, i). �
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Drawn together with Corollary 8.4 and the fact that the f -vector of a triangulation Σ

of a polytope P depends monotonously on the h-vector, Lemma 8.5 implies that the
maximal possible f -vector of Σ can read of from the Ehrhart series of P.

8.1.2. Commutative Algebra. We first recall the definitions and results from
commutative algebra we will use in the sequel. For details, we refer to the textbooks of
Cox, Little, and O’Shea [18] and Sturmfels [89].

Let K be an arbitrary field and X a set with n elements. By K[X] we denote the
polynomial ring over K with the n indeterminates x ∈ X. Sometimes we identify the
elements of X with x1, . . . , xn. The monomial xa :=

∏n
i=1 xai

i can be identified with the
vector a = (a1, . . . an) in Nn. A partial order ≺ on Nn is called a partial term order if a ≺ b
implies a+c ≺ b+c for all a, b, c ∈ Nn and ≺ is a well-ordering (i.e., each non-empty subset
of N has a unique smallest element). A partial term order which is a total order is called
a term order. A weight vector w = (w1, . . . ,wn) ∈ Rn

≥0 defines a partial term order ≺w

by letting a ≺w b if and only if 〈a,w〉 < 〈b,w〉. If one restricts oneself to homogeneous
elements of K[X], what we will do in the sequel, this also true for arbitrary w ∈ Rn. For
an ideal I ⊂ K[X] the radical rad(I) of I is defined as rad(I) := { f | f n ∈ I for some n ∈ N}.

For a polynomial f ∈ K[X] and a partial term order ≺ we define its initial term
init≺ f to be the sum of all monomial of f which are minimal with respect to ≺. If ≺ is a
term order, then init≺ f is a monomial, the initial monomial of f . For an ideal I ⊂ k[x]
the initial ideal with respect to ≺ is defined as the ideal generated by all initial terms.

init≺ I = 〈init≺ f | f ∈ I〉 .
If ≺ is a term order, this initial ideal is a monomial ideal, that is, an ideal consisting
only of monomials. For a weight vector w we also write initw instead of init≺w .

A finite set G ⊂ I is called a Gröbner basis for an ideal I ⊂ K[X] with respect to a
term order ≺ if it generates I and {init≺ g | g ∈ G} generates init≺ I. A universal Gröbner
basis U is a set of polynomials which is a Gröbner basis with respect to all possible
term orders. Since an ideal I ⊂ K[X] has only finitely many distinct initial ideals [89,
Theorem 1.2] every ideal has a universal Gröbner basis.

In fact, there is a much richer structure on the set of initial ideals of an ideal I. For
a weight vector w ∈ Rn one defines the Gröbner cone of w as

C[w] := {w′ ∈ Rn | initw(I) = initw′(I)} .
It can be shown that C[w] is indeed a polyhedral cone [89, Proposition 2.4] and that

the set of all C[w] (for all w) forms a polyhedral fan [89, Proposition 2.4], the Gröbner
fan of the ideal I ⊂ K[X]. Even more is true.

Theorem 8.6. [89, Theorem 2.5] If I ⊂ K[X] is a homogeneous ideal, then there
exists a polytope P called the state polytope of I whose normal fan coincides with the
Gröbner fan.

For a monomial ideal I ⊂ K[X] the Hilbert series of I is defined as

HilbI(t) =
∑

m<I

tdeg(m) ,
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where the sum runs over all monomials not in I and deg(m) denotes the total degree of
the monomial m. For a non-monomial ideal I the Hilbert series is defined as the Hilbert
series of a monomial initial ideal of I.

The Hilbert series, like the Ehrhart series, can be written in a nice form:

Proposition 8.7. [66, Theorem 5.2.20] The Hilbert Series of an ideal I ⊂ K[X] can
be written in the form

HilbI(t) =

∑d
i=0 hiti

(1 − t)d+1

for some maximal d ∈ N (called the dimension of the ideal).

The vector h = (h0, h1, . . . , hd) in the previous proposition is called the h-vector of
the ideal I. It follows also that there exists a polynomial HI such that

HilbI(t) =

∞∑

i=0

HI(i)ti.

This polynomial is called the Hilbert polynomial of I. The function i 7→ HilbI(i) is
sometimes called the Hilbert function of I. In the same way as in Lemma 8.5 we get.

Lemma 8.8. The coefficients of the Hilbert series of an ideal depend monotonously
on the h-vector of that ideal.

Lemma 8.9. Let I ⊂ K[X] be an ideal. Then HilbI = Hilbrad I if and only if I = rad I.

Proof. This follows directly form the definition: If the radical is strictly greater
then the ideal, then there exists some term in rad I which is not in I, hence the Hilbert
function increases. �

We will now relate the Gröbner cone and the state polytope with the secondary cone
and the secondary polytope for special ideals. Therefore we define two special classes
of ideals: one associated to polytopes and one associated to triangulations, or, more
general, to simplicial complexes.

Definition 8.10. (a) Let A = {a1, . . . , an} be a finite subset of Zd. Consider
the polynomial rings K[A] and K[T ] with T = {t1, . . . , td, t−1

1 , . . . , t−1
d }. The kernel

of the map
π : K[A]→ K[T ] : ai 7→ T ai = tai1

1 · · · taid
d

is called the toric ideal of A.
If P is a lattice polytope, we set the toric ideal of P as IP := IVert P.

(b) Let Σ be a simplicial complex with vertex set V. Then the Stanley-Reisner ideal
IΣ of Σ is the ideal in K[V] generated by all monomials

∏
v∈F v where F ⊂ V is

not a face of Σ.
On the other hand, given a squarefree monomial ideal I ⊂ K[X] the Stanley-

Reisner simplicial complex ΣI of I is the simplicial complex on X whose minimal
non-faces are the generators of I.

The existence of the Stanley-Reisner simplicial complex and that the two construc-
tions are inverse to each other follows from [71, Theorem 1.7]. Furthermore, it is shown
in [89, Lemma 4.14] that the ideal IA is homogeneous if and only if 〈ai,w〉 = 1 for
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some w ∈ Qn and all ai ∈ A. So if A is a point configuration without multiple points
(especially the set of vertices of a polytope P) satisfying our usual assumptions,the
corresponding toric ideal is homogeneous.

For toric ideals, the following relation between the Ehrhart series and the Hilbert
series was remarked by Sturmfels [88, p. 133].

Lemma 8.11. Let P be a lattice polytope. Then HIP(l) ≤ LP(l) for all l ∈ N0.

The correspondence between h-vectors of triangulations and h-vectors of Stanley-
Reisner ideals is given in the following proposition.

Proposition 8.12. [71, Corollary 1.15] Let Σ be a simplicial complex and IΣ its
Stanley-Reisner ideal. Then the h-vector of IΣ equals the h-vector of Σ.

We are now ready to state the results of Sturmfels [90] about the relationship be-
tween regular subdivisions of polytopes and initial ideals of toric ideals.

Theorem 8.13. [90, Theorem 3.1] Let P be a polytope with n vertices and ω ∈ Rn be
a weight vector that defines a term order on IP. Then the polyhedral subdivision Σw(P) is
a regular triangulation of P whose Stanley-Reisner ideal equals the radical of the initial
ideal initw IP.

Corollary 8.14. [90, Corollary 3.2] The Gröbner fan of IP is a refinement of the
secondary fan of P.

Corollary 8.15. [90, Corollary 3.3] The secondary polytope of P is a Minkowski
summand of the state polytope of the toric ideal IP.

Example 8.16. We consider the square C2 ⊂ R3 whose vertices are the columns of
the matrix

VT =


1 1 1 1
−1 −1 1 1
−1 1 −1 1


One easily computes that the corresponding toric ideal IC2 = 〈x1x4 − x2x3〉. The possible
initial ideals are 〈x1x4〉 and 〈x2x3〉. They correspond to the two possible triangulations
of the square. Hence the state polytope of IP and the secondary polytope of C2 are line
segments.

Note that Theorem 8.13 implies that the Gröbner cone C[w] of a weight vector
equals the secondary cone S [w] if and only if the initial ideal initw IP equals rad(initw IP).
A monomial ideal I is called squarefree, if all exponents in the generators of I are equal
to 0 or 1. It is easily seen, that a monomial ideal I, is squarefree if and only if I = rad I
[66, Corollary 4.1.12]. Since initw IP is monomial if w is generic, we get the following.

Proposition 8.17. The Gröbner cone C[w] of a generic weight function w equals
the secondary cone S [w] of the corresponding lifting function if and only if the initial
ideal initw IP is squarefree.

Corollary 8.18. Let P be a lattice polytope.

(a) If there exists some weight vector w such that Σw(P) is a unimodular triangu-
lation, then the Ehrhart polynomial of P equals the Hilbert polynomial of IP.
Furthermore, the initial ideal initw IP is squarefree.
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(b) Suppose that for some weight vector w the initial ideal initw IP is monomial and
squarefree. Then the Ehrhart polynomial of P equals the Hilbert polynomial of
IP and Σw(P) is a unimodular triangulation.

Proof. (a) Consider the initial ideal initw IP and its Hilbert polynomial Hinitw IP .
By definition, Hinitw IP = HIP . One the other hand, the h-vector of rad(initw IP)
equals the h-vector of Σw(P) by Theorem 8.13. However, by Theorem 8.2, the
h-vector of Σw(P) equals the Ehrhart h-vector of P. So we have LP = Hrad(initw IP).
Since rad(initw IP) ⊂ initw IP, the h-vector of rad(initw IP) is smaller then the
h–vector of initw IP, and, by Lemma 8.8, we have LP = Hrad(initw IP) ≤ Hinitw IP = HIP .
But, by Lemma 8.11, we have that HIP ≤ LP, so we can conclude LP = HIP and
Hrad(initw IP) = Hinitw IP .

Furthermore, we get that rad(initw IP) and initw IP have the same Hilbert func-
tion, so they are equal by Proposition 8.9. This shows that initw IP is squarefree.

(b) Since initw IP is squarefree, we have rad(initw IP) = initw IP. Using the same
argumentation as above, we directly get LP = Hrad(initw IP) = Hinitw IP = HIP . Fur-
thermore, by Theorem 8.13 in connection with Proposition 8.12, the h-vector
of Σw(P) equals the h-vector of P. Since only unimodular triangulations can
have this maximal possible h-vector, Σw(P) is a unimodular triangulation.

�

A lattice polytope P is called unimodular, if all its triangulations are unimodular.
In this special case we can conclude from Proposition 8.17 and Corollary 8.18.

Corollary 8.19. Let P be a unimodular polytope. Then we have:

(a) For any generic weight vector w the initial ideal initw IP is a squarefree monomial
ideal.

(b) The Gröbner fan of IP equals the secondary fan of P and the state polytope of
IP equals the secondary polytope of P.

Example 8.20. An example of a unimodular polytope is the product of two sim-
plices. This application was discussed in detail in [88, Section 6].

We now return to the case of a general lattice polytope P.

Proposition 8.21. Let P be a lattice polytope and w any generic weight function
for P. An upper bound for the h-vector of triangulations Σw(P) is given by the h-vector
of IP.The corresponding f -vector gives a bound for the f -vector of Σw(P). This bound is
achieved if and only if Σw(P) is unimodular.

Proof. As in the proof of Corollary 8.18, we get that the h-vector of rad(initw IP) is
(componentwise) smaller or equal then the h-vector of IP. But the h-vector of rad(initw IP)
equals the h-vector of Σw(P) by Theorem 8.13 together with Proposition 8.12. So the h-
vector of IP is an upper bound and the same is true for the f -vector. The last statement
follows from Corollary 8.18. �

8.1.3. Relations to Coherency of Weight Functions. Our aim is now to find
out how the notion of coherency of weight functions introduced in Section 2.2 fits into
the relation to commutative algebra.
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For a polytope P and a weight function w : Vert P→ R, we consider the initial ideal
Iw(P) := initw IP. If Iw(P) is a monomial ideal, we have an associated simplicial complex,
the Stanley-Reisner simplicial complex Σrad Iw , which is isomorphic to the triangulation
Σw(P) of P. We aim at a similar relation for weight functions w that do not necessarily
define a term order. Therefore, we define the corresponding subdivision ΣIw(P) of P
as the common coarsening of all subdivision corresponding to monomial initial ideals
of Iw(P).

Lemma 8.22. For a weight vector w on a polytope P we have ΣIw(P) = Σw(P).

Proof. Consider the set I of all monomial initial ideals of Iw(P). For each I ∈ I
there exists a maximal Gröbner cone CI corresponding to I. By Theorem 8.14, each such
cone CI is contained in a unique secondary cone S I. Our definition of ΣIw(P) just states
that ΣIw(P) = Σw′(P), where w′ is some weight function for P with S [w′] =

⋂
I∈I S I.

However, we have w ∈ ⋂
I∈ICI ⊂ ⋂

I∈I S I and hence S [w] = S [w′]. This shows the
claim. �

We need the following two statements about radical and initial ideals.

Lemma 8.23. Let I be a homogeneous ideal in a polynomial ring K[X] and w : X → R
a weight vector. Then we have

rad(initw(rad I)) = rad(initw I) .

Proof. Since rad I ⊇ I we obviously have rad(initw(rad I)) ⊇ rad(initw I), so it remains
to prove that rad(initw(rad I)) ⊆ rad(initw I). Let f ∈ rad(initw(rad I)). This means that
there exists some k1, k2 ∈ N and g ∈ K[X] such that f k1 = initw g and gk2 ∈ I. However, it
is easily seen that for any polynomial h ∈ K[X] we have initw(hk) = (initw h)k. So we have
initw(gk2) = f k1k2 , and hence we get that f k1k2 ∈ initw I which implies f ∈ rad(initw I). �

Lemma 8.24. Let I be a homogeneous ideal in a polynomial K[X] and w,w′ weight
vectors. Then the following assertions are equivalent.

(a) initw(initw′ I) = initw′(initw I),
(b) initw(initw′ I) = initw+w′(I) = initw′(initw I),
(c) the set of monomial initial ideals of initw+w′(I) is the intersection of those of

initw(I) and initw′(I),
(d) C[w] ∪C[w′] ⊂ C[w + w′].

Proof. Let U be a universal Gröbner basis of I. Then for an arbitrary weight
vector w̃ : X → R we have that initw̃ I = 〈initw̃ u | u ∈ U〉. If (a) holds we have
ũ := initw(initw′ u) = initw′(initw u) for all u ∈ U. However, by the definition of the partial
term order associated to a weight vector, we have that ũ = initε1w+w′ u = initw+ε2w′ u for
some ε1, ε2 > 0. This implies initw+w′ u = ũ, so we have shown the equivalence of (a) and
(b). Furthermore, (d) is just a reformulation of c in term of the Gröbner fan. Hence it
suffices to show (b) =⇒ (c) and (d) =⇒ (a).

To prove (b) =⇒ (c), denote the set of monomial initial ideals of initw I by P(w) and
that of initw′(initw I) by P(w,w′). With this one has P(w,w′) ⊆ P(w), P(w′,w) ⊆ P(w′),
and P(w)∩P(w′) ⊆ P(w,w′). Now suppose that (b) holds, which means that P(w,w′) =

P(w + w′) = P(w′,w). Then P(w) ∩ P(w′) ⊆ P(w,w′) = P(w + w′) ⊆ P(w) ∩ P(w′). This
implies (c).
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It remains to show (d) =⇒ (a). That C[w] ∪ C[w′] ⊂ C[w + w′] implies that the
cones C[w] and C[w′] are both faces of C := C[w + w′] and C[w + w′] is minimal with
this property. It is now easily seen, that C has to be the cone corresponding to the
initial ideal initw(initw′ I) and also to the initial ideal initw′(initw I), hence the two ideals
agree. �

We now can give a generalization of Proposition 8.21 to non-generic weight func-
tions.

Proposition 8.25. Let P be a lattice polytope. The h-vector of rad Iw is an upper
bound for the h-vector of all triangulations of P that refine Σw(P).

Proof. This follows from Lemma 8.23 using the same arguments as in the proof of
Proposition 8.21. �

Proposition 8.25 may be used to construct triangulations of P with small f -vector:
Look at some (or all) coarsest subdivision of P and choose that with the smallest h-
vector, then look at different refinements of it, look again at the h-vector, and so on.

As the last result of this section, we give an algebraic criterion for coherency of
weight functions.

Proposition 8.26. Let P be a lattice polytope and w and w′ weight functions for P.
If initw(initw′ IP) = initw′(initw IP) then the sum w + w′ is coherent.

Proof. By definition, the sum w + w′ is coherent if the cones S [w] and S [w′] in the
secondary fan are contained in S [w + w′]. By Lemma 8.24, the cones C[w] and C[w′]
of the Gröbner fan are contained in C[w + w′]. Since the Gröbner fan is a refinement of
the secondary fan by Corollary 8.14, this shows the claim. �

8.2. Finite Metric Spaces

In Section 2.6, we discussed the relation of general splits and tight spans to the
classical case of finite metric spaces. In this section, we will give some additional results
about splits and tight spans of finite metric spaces, motivating a further study of them
with the methods developed for general tight spans and splits.

Proposition 8.27. Let S be a weakly compatible split system for ∆(2, n). Then S
is incompatible if and only if it is totally incompatible.

Proof. To a split S = (A, B) of ∆(2, n) we associate the complete bipartite graph GS

on [n] connecting all elements of A with all elements of B. (So i and j are connected
in GS if and only if ei + e j lies in the splitting hyperplane HS .) In this notion, a split
system S is totally incompatible, if and only if the intersection GS := ∩S∈SGS (i.e., the
graph on [n] whose edges are the common edges of all GS , S ∈ S) of the corresponding
bipartite graphs is spanning.

To see this, let first S 1 = (A1, B1) and S 2 = (A2, B2) be compatible, so we can assume
that A1 ( A2. Then any i ∈ A2 \ A1 is an isolated point of GS 1 ∩ GS 2 since in GS 1 , the
vertex i is only connected with vertices of A1, in GS 2 , it is only connected with elements
of B2, and A1 ∩ B2 = ∅. So GS 1 ∩GS 2 is not spanning.
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Let now S 1 and S 2 be incompatible and i ∈ A1 ∩ A2. Since B1 ∩ B2 , ∅, there exists
some j ∈ B1 ∩ B2 such that i is connected to j in GS 1 ∩ GS 2 , and hence GS 1 ∩ GS 2 is
spanning. If i is in any other intersection, we similarly get some j to which i is connected
in GS 1 ∩GS 2 . The claim about arbitrary split systems follows by induction.

We will now prove the statement with induction on the cardinality of S. For |S| = 2
the assertion is obviously true for arbitrary polytopes by definition. So assume, that
there is an incompatible, but non-totally incompatible split system S with |S| ≥ 3. This
means that the intersection GS 1 ∩GS 2 for any S 1, S 2 ∈ S is spanning, but the graph GS
is not. Let m1 ∈ [n] be an isolated vertex of GS and S′ := S \ {S 1} for some S 1 ∈ S. By
the induction hypotheses, we have an edge in GS′ connecting m0 with some m1 ∈ [n]. By
assumption, m0 and m1 are not connected by an edge of GS 1 so in the notion introduced
before Proposition 2.47 we have S 1(m0) = S 1(x1), but S (m0) , S (m1) for all S ∈ S′. With
the same argumentation we find S 2, S 3 ∈ S distinct from S 1 and m2,m3 ∈ [n] such that
S i(m0) = S j(m j) if and only if i = j for all i, j ∈ [n]. Hence S is not weakly compatible
by Proposition 2.47. �

An interesting property that can easily be derived with our general theory states
that all split triangulations of ∆(2, n) have the same f -vector (cf. Corollary 8.3).

Proposition 8.28. All split triangulations of ∆(2, n) are unimodular.

Proof. Let Σ be a split triangulation of ∆(2, n). Since the claim is obvious for n = 3,
we can assume (using induction) that simplices F ∈ Σ that are contained in the boundary
of ∆(2, n) have normalized volume 1. By Proposition 2.39, all splits of ∆(2, n) are induced
by hyperplanes H defined by

∑

i∈A

xi =
∑

i<A

xi

for some A ⊆ [n]. So H ∩ ∆(2, n) is the convex hull of all points of the form ei + e j with
i ∈ A, j ∈ [n] \A. This is a product of a (|A| −1)- and an (n− |A| −1)-dimensional simplex.
It is a well know fact that all triangulations of products of two simplices are unimodular
(see e.g., [6]). Since any F ∈ Σ that has codimension one is either in the boundary
of ∆(2, n) or in some split hyperplane, F has normalized volume one. However, this
implies that all F ∈ Σ must have normalized volume one. �

Remark 8.29. . The f -vector for the unimodular triangulations of ∆(2, n)
was computed in [46].

. For n ≤ 5 all triangulations of the second hypersimplex are unimodular. They
are all (up to symmetry) given in [20], the corresponding tight spans were
previously classified in [23].

. For n ≥ 6 not all triangulations of the second hypersimplex are unimodular.
Sturmfels and Yu [91] classified all triangulations of ∆(2, 6) and found (up to
symmetry) 327 unimodular and 12 non-unimodular triangulations.

. In fact, there is – up to symmetry – only one split triangulation of ∆(2, n); see
Example 2.50. Since this triangulation is unimodular, this gives an alternative
proof of Proposition 8.28.
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Split systems of ∆(2, n) have another interesting property:

Proposition 8.30. The union of two compatible split systems of ∆(2, n) is weakly
compatible.

Proof. Directly from Proposition 2.47, one sees that each two splits of the second
hypersimplex are weakly compatible. (Note that this is obviously not true for arbitrary
polytopes, for example for polygons with more than three vertices.) Now the claim
follows by Corollary 3.9. However, we additionally give a direct combinatorial proof.

Let the union of two compatible split systems S1 and S2 be not weakly compatible.
This means that we have three splits S 1, S 2, S 3 ∈ S1∪S2 and four elements m0,m1,m2,m3

such that S i(m j) = S i(m0) if and only if i = j. We can assume that S 1 and S 2 are in S1,
and so they are compatible by assumption. This means that one of the four intersections
S 1(m0) ∩ S 2(m0), S 1(m0) ∩ ¯S 2(m0), ¯S 1(m0) ∩ S 2(m0) and ¯S 1(m0) ∩ ¯S 2(m0) is empty, where
·̄ denotes the complement of a set in [n]. However, we have m0 ∈ S 1(m0) ∩ S 2(m0),
m1 ∈ S 1(m1) ∩ S 2(m1) = S 1(m0) ∩ ¯S 2(m0), m2 ∈ S 1(m2) ∩ S 2(m2) = ¯S 1(m0) ∩ S 2(m0) and
m3 ∈ S 1(m3) ∩ S 2(m3) = ¯S 1(m0) ∩ ¯S 2(m0) by the definition of weak compatibility. This is
a contradiction to our assumption and hence finishes the proof. �

If we interpret Proposition 8.30 in the theory of finite metric spaces we get an
interesting statement. We start out with some definitions

Definition 8.31. (a) A weightend tree T = (V, E,w) is a tree (V, E) with vertices
V and edges E together with a weight function w : E → R+ assigning a weight
to each edge.

(b) Let T = (V, E,w) be a weightend tree. We define an associated metric dT on the
set V by

dT (x, y) =

k∑

i=1

w(zi) ,

where x = z1, . . . , zk = y is the (unique) path in T from x to y. A metric d is
called a tree metric if there exists a weightend tree T such that d = dT .

The key observation about tree metrics and tight spans is the following; see [23,
Theorem 8] and Proposition 2.30.

Lemma 8.32. Let dT be a tree metric.

(a) The tight span T−dT (∆(2, n)) of dT is a realization of the tree T = (V, E,w) in R|V |
whereas the edge length are measured by || · ||∞.

(b) T−dT (∆(2, n)) is induced by a compatible split system such that each edge of T
corresponds to one split.

Now we can give a new proof of the following.

Corollary 8.33. [4, Corollary 8] Let dT1 and dT2 be tree metrics. Then the sum
dT1 + dT2 is coherent, and T−dT1−dT2

(∆(2, n)) is at most two-dimensional.

Proof. By Proposition 2.30 the tight span of a metric d is a tree if and only if
Σ−d(∆(2, n)) is induced by a compatible split system. So by Proposition 8.30 in connec-
tion with Corollary 2.4 the sum dT1 + dT2 is coherent. It follows from Proposition 3.14
that T−dT1−dT2

(∆(2, n)) is at most two-dimensional. �
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Since the union of k compatible split systems does not have to be weakly compatible
for k ≥ 3, the argumentation in the proof of Corollary 8.33 cannot be generalized for
arbitrary k. So the following question remains.

Question 8.34. Let B be a set of k metric trees. Is T−∑
T∈B dT (∆(2, n)) at most k-

dimensional?

Corollary 8.33 can be used to give an algorithm to compute the tight span of the
sum of two metric trees. We call a set B of trees compatible if the union of all associated
splits system is weakly compatible. In fact, the algorithm we will sketch now computes
the tight span of the sum of several compatible tree metrics or an arbitrary weakly
compatible split system S of ∆(2, n). It turns out that our algorithm is similar to the
algorithm given by Dress and Huson in [28], so we refer there for the details and only
give a very rough sketch.

A weightend tree T = (V, E,w) can be thought of as a collection ST of compatible
splits S (one for each edge of the tree (Proposition 2.30) occupied with weights wi (the
length of the edge). The tight span T−∑

T∈B dT (∆(2, n)) of a set of compatible trees then
equals T (S) := TS(∆(2, n)) where S :=

⋃
T∈B ST .

We regard the tight span T (S) as an abstract polyhedral complex such that each
element of [n] is attached to some vertex of T (S). By [52, Corollary 7.3], all cells in the
tight span of weakly compatible split system are either isomorphic to cubes or to rhombic
dodecahedra. So the full nature of each cell C ∈ (S) is determined by its vertices and its
edges. If we additionally store a weight for each edge, we also have the metric structure
of the tight span. The algorithm now works by starting with the abstract polyhedral
complex C∅ consisting of an isolated vertex to which all i ∈ [n] are associated and adding
subsequently all S ∈ S (in the right order). Given the (abstract) tight span CS for a
weakly compatible split system S and a split S = (A, B) the complex CS∪{S } is obtained
by first computing the subcomplex S of CS which separates the elements of A form the
elements of B. Then S is duplicated and the two copies of S are connected by edges
corresponding to S . If we have a weight wS associated to each S ∈ S (e.g., if S comes
from a set of compatible trees), we mark all these edges with wS and have at the end
also a metric representation of T (S).

8.3. Quasi Split Subdivisions

In Chapter 6, we studied generalizations of splits by looking at additional facets of
the secondary polytope. In particular, in Section 6.2, we defined k-split subdivisions as
generalizations of split subdivisions. In this section, we describe another way to define a
generalization of split subdivisions. The following examples should serve as a motivation
for the definition.

Example 8.35. Let P be an octahedron such that one vertex is slightly perturbed.
Then the subdivision of P into four simplices defined by the edge connecting to of the
other vertices is not a split subdivision of P. However, the same subdivisions of the
non-perturbed octahedron would be a split subdivision.
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Example 8.36. Let Q be the the quadrangle whose vertices are the columns of the
matrix

VT =


1 1 1 1
1 −1 −1 2
1 2 −1 −1

 .

and Σ the triangulation of Q depicted in Figure 8.1. Then the prism over Q has an
obvious split subdivision whose cells are the prisms over the cells of Σ. This subdivision
cannot be refined to a split triangulation. However, we could use split subdivisions for
each cell that fit together to a split triangulation of the prism.

Figure 8.1. Product of two split triangulations that cannot be refined
to a split subdivision.

We now give a recursive definition of quasi split subdivision.

Definition 8.37. Let P be a polytope and Σ a subdivision of P. Then Σ is called
a quasi split subdivision if either

. Σ is a split subdivision or

. there exists a split S of P and quasi split subdivisions Σ+, Σ− of S +, S −, respec-
tively, which agree on P ∩ HS = S + ∩ S − such that Σ = Σ+ ∪ Σ−.

If we now look again at Example 8.35 and Example 8.36, we see that the subdivisions
we constructed there fit with this definition. However, note that if we perturb not only
one, but all vertices of the octahedron of Example 8.35 and take a similar triangulation,
this would not be a quasi split subdivision. By contrast, Example 8.35 is only a special
case of some more general construction: If the factor of a product of polytopes allow
split triangulations, the product allows quasi split subdivisions. This will be shown in
the rest of this section.

Lemma 8.38. Let P,Q be polytopes and ΣP, ΣQ split subdivisions of P, Q, respectively.
Then

ΣP × ΣQ := {FP × FQ | FP ∈ ΣP, FQ ∈ ΣQ}
is a split subdivision of P × Q. If ΣP, ΣQ are quasi split subdivisions, then ΣP × ΣQ is a
quasi split subdivision.
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Proof. We will assume throughout the proof that P and Q are full-dimensional
and work with affine split hyperplanes.

It is easily seen that ΣP × ΣQ is a valid subdivision of P × Q (see e.g., [19, Proposi-
tion 4.2.14]). To prove that it is a split subdivision if ΣP and ΣQ are split subdivisions, it
suffices to prove that for any codimension-one-cell C ∈ ΣP×ΣQ the hyperplane H := aff C
defines a split of P × Q and that there exist a set C of codimension-one-cells of ΣP × ΣQ

such that H ∩ (P × Q) =
⋃

C∈CC.
Since C is of codimension one, it is of the form CP × CQ for some cells CP ∈ ΣP,

CQ ∈ ΣQ one of which is full-dimensional and the other has codimension one. We
assume that C1 := CP is of codimension one. Since ΣP is a split subdivision, aff CP

defines a split of P and hence, by Lemma 3.27 (a), H defines a split of P × Q. Now let
C2, . . . ,Ck be codimension-one-cells of ΣP such that aff C1 ∩ P =

⋃k
i=1 Ci. These Ci exist

since ΣP is a split subdivision. We define C := {Ci×F | 1 ≤ i ≤ k, F ∈ ΣQ full-dimensional}.
Since H = aff C1 × aff Q, we get H ∩ (P × Q) =

⋃
C∈CC. This shows the claim for split

subdivisions.
If ΣP and ΣQ are quasi split subdivisions with splits S (P), S (Q) of P,Q, respectively,

we have a subdivision of P × Q into the four maximal dimensional cells S (P)+ × S (Q)+,
S (P)+ × S (Q)−, S (P)− × S (Q)+, and S (P)− × S (Q)−. The claim now follows from the split
subdivision case taking into account the recursive definition. �

Proposition 8.39. Let P,Q be polytopes and ΣP,ΣQ quasi split triangulations of P,Q,
respectively. Then there exists a quasi split triangulation Σ of P×Q that is a refinement
of ΣP × ΣQ.

Proof. As ΣP, ΣQ are triangulations, the product ΣP × ΣQ is a subdivision of P×Q
into products of simplices. By Lemma 8.38, it is a quasi split subdivision. Now take any
ordering of the vertices of P and any ordering of the vertices of Q. For each product of
simplices F := σP ×σQ ∈ ΣP ×ΣQ with simplices σP ∈ ΣP, σQ ∈ ΣQ, we take the staircase
triangulation from Example 3.22 that is obtained by the restriction of the orderings of
the vertices of P,Q to the vertices of σP,σQ, respectively. So we have split triangulations
for each F ∈ ΣP × ΣQ that agree on their intersections by construction. Combining all
these triangulations gives the desired quasi split triangulation of P × Q. �

Especially, we have the following, which is not true if we omit the “quasi” as we have
seen in Example 8.36.

Corollary 8.40. If P and Q are polytopes such that there exists (quasi) split tri-
angulations of P and Q, then there exists a quasi split triangulation of P × Q.

8.4. Fiber Polytopes

In [10], Billera and Sturmfels define the notion of fiber polytopes and show that
secondary polytopes are special instances for them. In this section, we will investigate
how splits are related to this construction.

For polytopes P,Q and a projection π : Q → Rd+1 with π(Q) = P the fiber polytope
of Q over P is defined as

FibPoly(Q, P) :=
{

1
vol P

∫

P
γ(x)dx

∣∣∣∣∣ γ is a section of π

}
,(8.1)
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where a section γ of π is a function γ : P→ Q with π◦γ = idQ. Instead of this definition
as a Minkowski integral of a polytope bundle, we will use the following description, which
is given in [10, Theorem 1.5]. We denote by C(π) the polytopal complex obtained as the
common refinement of all subdivisions Σ of P with the property that for all faces F ∈ Σ

there exists some face F′ of Q with π(F′) = F. One can show that all such subdivisions
have to be regular. In general, C(π) is not a subdivision of P according to the definition
used throughout this thesis since there might occur inner points. However, C(π) is a
subdivision of some point configuration A with convA = P. Then we have

FibPoly(Q, P) =
∑

C∈C(π)

vol C
vol P

π−1(cC) ,(8.2)

where the sum runs over all full-dimensional cells C and cC is the centroid of C.
This description of the fiber polytope gives rise to a natural generalization: LetA be

any point configuration with convA = P and Σ a subdivision of A. Abusing notation,
but in accordance with standard terminology, we will call a subdivision of A with
this property also a subdivision of P. There will be no chance for confusion since all
subdivisions of P in our usual definition that occur in this section are regular, and we
can stick to the term regular subdivision for them. We define the fiber polytope of Q
over P with respect to Σ as

FibPoly(Q, P,Σ) =
∑

C∈Σ

vol C
vol P

π−1(cC) .(8.3)

Lemma 8.41. Let Σ be a subdivision of P and Σ′ a refinement of Σ. Then

FibPoly(Q, P,Σ′) ⊆ FibPoly(Q, P,Σ) .

Proof. That Σ′ is a refinement of Σ means that for each maximal cell C of Σ there
exists a set M of maximal cells of Σ′ such that C =

⋃
D∈M D. So, by our definition (8.3),

it suffices to show that

vol P · π−1(cP) =
∑

C∈Σ
vol C · π−1(cC) ,

for any subdivision Σ of P. Suppose that Q ⊂ Re+1, P ⊂ Rd+1 have codimension one (as
usual) and that π : Q → Rd+1 is given by x 7→ Ax for some (d + 1) × (e + 1)-matrix A.
Then for any subpolytope C of P we have

vol C · π−1(cC) =
{
vol C · x ∈ Re+1

∣∣∣ Ax = cC and x ∈ Q
}

=

{
x ∈ Re+1

∣∣∣∣∣ Ax = vol C · cC and
x

vol C
∈ Q

}
.

Since
∑

C∈Σ
vol C
vol P = 1 we have that xC

vol C ∈ Q for all C ∈ Σ implies

1
vol P

∑

C∈Σ
xC =

∑

C∈Σ

vol C
vol P

· xC

vol C
∈ Q .
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Furthermore, by the definition of the centroid, we have
∑

C∈Σ vol C ·cC = vol P ·cP. Hence
we can conclude

∑

C∈Σ
vol C · π−1(cC) =


∑

C∈Σ
xC ∈ Re+1

∣∣∣∣∣∣∣ AxC = vol C · cC and
xC

vol C
∈ Q for all C ∈ Σ



⊆
{
x ∈ Re+1

∣∣∣∣∣ Ax = vol P · cP and
x

vol P
∈ Q

}

= vol P · π−1(cP) .

�

Especially, this implies that FibPoly(Q, P) = FibPoly(Q, P,C(π)) ⊆ FibPoly(Q, P,Σ)
if Σ is a coarsening of C(π), which is the case we are interested in.

Remark 8.42. If Σ is finer than C(π), it follows from the equivalence of the descrip-
tions (8.1) and (8.2) of the fiber polytope that FibPoly(Q, P,Σ) = FibPoly(Q, P).

Another consequence of Lemma 8.41 is the following.

Corollary 8.43. Let Σ1,Σ2 be subdivisions of P. If Σ is the common refinement
of Σ1 and Σ2, then

FibPoly(Q, P,Σ) ⊆ FibPoly(Q, P,Σ1) ∩ FibPoly(Q, P,Σ2) .

The relation between fiber polytopes and secondary polytopes is the following.

Theorem 8.44. [10, Theorem 2.5] Let P be a d-polytope with n vertices and consider
the canonical projection π : ∆(1, n)→ P. Then

SecPoly(P) = (d + 1) vol P · FibPoly(∆(1, n), P) .

In this case, C(π) is just the chamber complex of P, which is the common refinement
of all all regular subdivisions of P. So, given any set R of regular subdivision of a poly-
tope P, our new construction allows us to give an outer approximation for the secondary
polytope by either intersecting all fiber polytopes FibPoly(∆(1, n), P,Σ) for all Σ ∈ R or
computing the fiber polytope FibPoly(∆(1, n), P,CR(R)), where CR(R) denotes the com-
mon refinement of all Σ ∈ R. Note that this construction might be interesting for very
different sets of regular subdivisions R. For example, one could take some regular tri-
angulations of P, some very coarse regular subdivision of P, a combination of both, or
even a set of regular subdivision constructed in some random way and then study the
approximation of SecPoly(P) arising from our construction.

As splits are the main topic of this thesis, we will take a short look at the case
where R is a set of splits of P.

Proposition 8.45. Let S be the set of all splits of a polytope P. Then

(d + 1) vol P · FibPoly(∆(1, n), P,CR(S)) ⊆ SplitPoly(P) .

Proof. It is easy to see that all the Equations 2.3 are even true for all elements
of (d + 1) vol P · FibPoly(∆(1, n), P,TP), where TP is the trivial subdivision of P. So, by
Lemma 8.41, it suffices to show that for all splits S of P the Inequality (2.6) holds for
all x ∈ (d + 1) vol P · FibPoly(∆(1, n), P, S ).
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So let x ∈ FibPoly(∆(1, n), P, S ), that is, there exists y, z ∈ Rn
≥0 with x = y + z and

VT y = cS +
, VT z = cS − . Suppose that the split hyperplane HS = {x ∈ Rd+1 | 〈a, x〉 = 0} and

that 〈a, x〉 ≥ 0 for all x ∈ S + (so 〈a, x〉 ≤ 0 for all x ∈ S −). Then we compute∑

v∈Vert S +

|〈a, v〉|xv =
∑

v∈Vert S +

〈a, v〉yv +
∑

v∈Vert S +

〈a, v〉zv

︸           ︷︷           ︸
≥0

≥
∑

v∈Vert P

〈a, v〉yv −
∑

v∈Vert S −

〈a, v〉yv

︸           ︷︷           ︸
≤0

≥ a(VT v) = cS +
,

which shows that (2.6) holds for (d + 1) vol P · x. �

It is obvious that, in general, the converse of Proposition 8.45 does not hold since
fiber polytopes are trivially bounded, and split polyhedra does not have to be bounded.
However, this does not tell us much because we could add the trivial inequalities xv ≥ 0
(or even xv ≥ c, where c > 0 is the smallest volume of any simplex with vertices of P
one of which is v) for all Vertices v of P.

Remark 8.46. For the start of a further examination, the following questions that
arise naturally from our discussion above, should be answered first:

(a) Does the converse of Corollary 8.43 hold, that is

FibPoly(Q, P,Σ) = FibPoly(Q, P,Σ1) ∩ FibPoly(Q, P,Σ2) ,

where Σ is the common refinement of Σ1 and Σ2?
(b) For a split S , do we have equality in

FibPoly(∆(1, n), P, S ) = {x ∈ ∆(1, n) | (d + 1) vol P · x satisfies (2.6)} ?
(c) Is there a sort of generalization of Proposition 8.45 (or the answer to Ques-

tion (b)) to other facets of the secondary polytope (e.g., k-splits)?
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